scholarly journals Neutron stars as probes of dark matter

2020 ◽  
Vol 29 (14) ◽  
pp. 2043028
Author(s):  
M. Ángeles Pérez-García ◽  
Joseph Silk

Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However there is now a large consensus that an elusive sector of matter in the universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the universe.

2011 ◽  
Vol 20 (supp02) ◽  
pp. 109-116
Author(s):  
MOISÉS RAZEIRA ◽  
ALEXANDRE MESQUITA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
ROSANA O. GOMES

In this work we study the effect of the accretion of dark matter into neutron stars. We have considered two relativistic nuclear effective models for the structure of neutron stars (ZM and Boguta-Bodmer) and three profiles for dark matter (Navarro-Frenk-White, Einasto, and Burkert). We have analyzed the effects of these effective models and profiles in the equation of state of nuclear matter and in the capture rate of dark matter by neutron stars. Our results confirm that the capture rate of dark matter by neutron stars is strongly model dependent. This leads to more questions than answers due to the uncertainties in the significance of the results, requiring therefore for its elucidation new signatures of capture of dark matter by these stellar objects.


2021 ◽  
Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.


2007 ◽  
Vol 16 (10) ◽  
pp. 1573-1579
Author(s):  
CHENGWU ZHANG ◽  
LIXIN XU ◽  
YONGLI PING ◽  
HONGYA LIU

We use a parameterized equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and suppose the universe contains two major components: dark matter and dark energy. Using the recent observational datasets: the latest 182 type Ia Supernovae Gold data, the three-year WMAP CMB shift parameter and the SDSS baryon acoustic peak, we obtain the best fit values of the EOS and two major components' evolution. We find that the best fit EOS crosses -1 in the near past where z ≃ 0.07, the present best fit value of wx(0) < -1 and for this model, the universe experiences the acceleration at about z ≃ 0.5.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Maria A. Skugoreva ◽  
Alexey V. Toporensky

Abstract We consider the cosmological evolution of a flat anisotropic Universe in f(T) gravity in the presence of a perfect fluid. It is shown that the matter content of the Universe has a significant impact of the nature of a cosmological singularity in the model studied. Depending on the parameters of the f(T) function and the equation of state of the perfect fluid in question the well-known Kasner regime of general relativity can be replaced by a new anisotropic solution, or by an isotropic regime, or the cosmological singularity changes its nature to a non-standard one with a finite values of Hubble parameters. Six possible scenarios of the cosmological evolution for the model studied have been found numerically.


2005 ◽  
Vol 20 (19) ◽  
pp. 1443-1449 ◽  
Author(s):  
WEI WANG ◽  
YUANXING GUI ◽  
SUHONG ZHANG ◽  
GUANGHAI GUO ◽  
YING SHAO

We assume that dark matter and dark energy satisfy the unified equation of state: p = B(z)ρ, with p = pdE, ρ = ρdm+ρdE, where the pressure of dark matter pdm = 0 has been taken into account. A special function [Formula: see text] is presented, which can well describe the evolution of the universe. In this model, the universe will end up with a Big Rip. By further simple analysis, we know other choices of the function B can also describe the universe but lead to a different doomsday.


2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.


Author(s):  
Jackie Liu

ABSTRACT By theorizing the physical reality through the deformation of an arbitrary cross-ratio, we leverage Galois differential theory to describe the dynamics of isomonodromic integratable system. We found a new description of curvature of spacetime by the equivalency of isomonodromic integratable system and Penrose’s spinor formalism of general relativity. Using such description, we hypothetically quantize the curvature of spacetime (gravity) and apply to the problem of the evolution of the universe. The Friedmann equation is recovered and compared so that the mathematical relationship among dark energy, matter (dark matter + ordinary matter), and ordinary matter, ΩM2≃4ΩbΩΛ, is derived; the actual observed results are compared to this equation (calculated ΩM = 0.33 vs. observed ΩM = 0.31); the model might explain the origin of dark energy and dark matter of the evolution of the universe.


2021 ◽  
Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.


Author(s):  
Arun Kenath ◽  
Kiren O. V. ◽  
Sivaram C

In a recent paper we had discussed possibility of DM at high redshifts forming primordial planets composed entirely of DM to be one of the reasons for not detecting DM (as the flux of ambient DM particles would be consequently reduced). In this paper we discuss the evolution of these DM objects as the universe expands. As universe expands there will be accretion of DM, Helium and Hydrogen layers (discussed in detail) on these objects. As they accumulate more and more mass, the layers get heated up leading to nuclear reactions which burn H and He when a critical thickness is reached. In the case of heavier masses of these DM objects, matter can be ejected explosively. It is found that the time scale of ejection is smaller than those from other compact objects like neutron stars (that lead to x-ray bursts). These flashes of energy could be a possible observational signature for these dense DM objects.


Author(s):  
David M. Wittman

Orbits are ubiquitous in the universe: moons orbit planets, planets orbit stars, stars orbit around the center of the Milky Way galaxy, and so on. Any theory of gravity will have to explain the properties of all these orbits. To pave the way for developing the metric theory of gravity (general relativity) this chapter examines the basics of orbits as observed and as explained by the Newtonian model of gravity. We can use our understanding of gravity to infer the masses and other properties of these cosmic systems. Te chapter concludes with four optional sections in this spirit, covering the slingshot maneuver; dark matter; binary star orbits and how they reveal the masses of stars; and extrasolar planets.


Sign in / Sign up

Export Citation Format

Share Document