Application of a wear-resistant sintered surface layer by electric contact welding

1971 ◽  
Vol 10 (12) ◽  
pp. 1007-1011
Author(s):  
E. V. Rymorov
Author(s):  
Андрей Иванович Фомин ◽  
Николай Александрович Панькин

Методами рентгенографии и электронной микроскопии исследован поверхностный слой чугуна ВЧ50-2 после его обработки электроконтактной приваркой. В качестве присадочного материала использовалась лента из стали 50ХФА. Применялись технологии обработки с созданием промежуточного слоя из никелевого порошка ПГН-12Н-01 и без него. Получены результаты о фазовом составе, субструктуре и остаточных напряжениях. Исследуемая система состоит из фаз a - Fe и у - Fe . Параметры субструктуры (микродеформации и измельчение блоков) имеют одинаковые значения для различных режимов электроконтактной приварки. Остаточные напряжения носят растягивающий характер и уменьшаются при создании промежуточного слоя из никелевого порошкового материала. Основной механизм их образования - термические воздействия на материал, обрабатываемый электроконтактной приваркой. Установлено, что после электроконтактной приварки ленты могут образовываться трещины, их ориентация преимущественно параллельно обрабатываемой поверхности обусловлена наличием большого градиента температур. The surface layer of DI50-2 cast iron after its processing by electric contact welding has been investigated by methods of X-ray diffraction and electron microscopy. A 50HVA steel strip was used as a filler material. Processing technologies were used with the creation of an intermediate layer of nickel powder PC-12N-01 and without it. Results on phase composition, substructure and residual stresses are obtained. The system under study consists of a-Fe and у-Fe phases. Substructure parameters (microstrain and block refinement) have the same values for different modes of electrical contact welding. Residual stresses are of a tensile nature and decrease when an intermediate layer of nickel powder material is created. The main mechanism of their formation is thermal effects on the material processed by electrocontact welding. Cracks may form after electrical contact welding of the tape. They are oriented mainly parallel to the surface to be treated and are due to the presence of a large temperature gradient.


Author(s):  
Dinar R. Masalimov ◽  
Roman R. Galiullin ◽  
Rinat N. Sayfullin ◽  
Azamat F. Fayurshin ◽  
Linar F. Islamov

There are a number of difficulties in the electrical contact welding of powder materials: shedding of powder from the surface of a cylindrical part, impossibility of hardening the layer during welding due to flushing of the powders with coolant and unstable flow of powder into the welding zone. One solution is pre-spraying the powder in some way. (Research purpose). The research purpose is investigating the possibility of electric contact welding of metal powders preliminarily sprayed by a gas-flame method, namely, adhesion strength and losses during preliminary gas-flame spraying of powders. (Materials and methods) Powders of grades PG-NA-01, PrKhIIG4SR, PRZh3.200.28 were sprayed onto flat samples of St3 steel, polished to a roughness of Ra 1.25. The strength of powder adhesion to the base was studied by the cut method. (Results and discussion) The percentage loss of the powder as a whole is 3-23 percent for all the distances studied. The greatest powder losses appear at a distance of more than 180 millimeter from the tip of the burner for powders of grades PG-NA-01 and PrKhIIG4SR. The smallest powder losses were observed for PrZh3.200.28 powder, which totaled 3-7 percent. The maximum adhesion strength of the sprayed powders to the surface was 22.1 megapascals' when spraying the PG-NA-01 powder. The adhesion strength of powders of the grades PrKhIIG4SR and PrZh3.200.28 is small and amounts to 0.2-3 megapascals'. (Conclusions) The use of preliminary flame spraying of powders for their further electric contact welding is possible using PG-NA-01 grade powder, while the best adhesion to the base (that is more than 20 megapascals') is achieved with a spraying distance of 120-140 millimeter. The smallest powder losses during flame spraying are achieved at a spraying distance of 100-160 centimeters', at which the powder loss for the studied grades was 4-12 percent.


Author(s):  
S. V. Raykov ◽  
E. V. Kapralov ◽  
E. S. Vashchuk ◽  
E. A. Budovskikh ◽  
V. E. Gromov ◽  
...  

2021 ◽  
Author(s):  
Dmytro Marchenko ◽  
Aleksandr Dykha ◽  
Kateryna Matvyeyeva ◽  
Viacheslav Kurepin

2019 ◽  
Vol 91 (2) ◽  
Author(s):  
Paweł Widomski ◽  
Zbigniew Gronostajski ◽  
Marcin Kaszuba ◽  
Jagoda Kowalska ◽  
Mariusz Pawełczyk

In response to the growing need to use wear-resistant layers that increase durability of tools in forging pro-cesses, hybrid layers have been proposed that combine hardfacing with nitriding treatment. This article presents the results of laboratory tests of surface wear-resistant layers made with a new hybrid technology Gas-Shielded Metal Arc surfacing (hardfacing) with ZeroFlow gas nitriding. Specimens made with hardfacing or nitriding were prepared and examined. Analysis covered the thorough microstructure study, EDX chemical composition analysis and microhardness analysis. In experiment, 3 different types of nitrided layers were proposed for alpha, gamma prim and epsilon nitrides in the surface layer. The results of metallographic research in the surface layer was presented. The analysis of chemical composition in the particular overlay welds was performed to determine the content of alloying elements in the particular overlay welds. The susceptibility to nitriding of used weld materials as well as the ability to form particular types of nitrides on selected welded substrates was also tested.


2017 ◽  
Vol 42 (2) ◽  
pp. 88-93
Author(s):  
I.R. Shakirov ◽  
◽  
I.I. Zagirov ◽  
R.N. Sayfullin ◽  
◽  
...  

2012 ◽  
Vol 186 ◽  
pp. 192-197 ◽  
Author(s):  
Tomasz Tański ◽  
Krzysztof Labisz

The purpose of this work is electron microscope investigation of the Ti/TiCN/TiAlN and Cr/CrN/CrN coatings deposited by PVD process. The investigations were performed using scanning and transmission electron microscopy for the microstructure determination. By mind of the transmission electron microscopy the high resolution and phase determination was possible to obtain. The morphology was studied as well the lattice parameters for the layer matrix and substrate phase identification using diffraction methods was applied. After the coating of the aluminium alloys AlSi9Cu and AlSi9Cu4 with the selected coatings there are crystallites detected with the size of several tenth of diameter. The investigated samples were examined metallographically using electron microscope with different image techniques, also EDS microanalysis and electron diffraction was made. As an implication for the practice a new layer sequence can be possible to develop, based on PVD technique. Some other investigation should be performed in the future, but the knowledge found in this research shows an interesting investigation direction. The originality and value of this combination of TEM investigation for PVD deposited surface lasers on aluminium alloys makes the investigation very attractive for automotive and other industry branches. Some practical implications and employment of the surface treatment technology for elements, made from tool materials, with the PVD and CVD methods, to obtain the high wear resistant coatings, makes it possible to improve the properties of these materials by – among others – decreasing for example their friction coefficient, microhardness increase, improvement of the tribological contact conditions in practical use. One original value is it also to applied the PVD method on a common material like aluminium alloy. The double layer coatings worked out In the PVD process on the Al0Si-Cu alloys substrate hale the following configuration of the layers: bottom layer/gradient layer/wear resistant hard surface layer.


2021 ◽  
Vol 2021 (6) ◽  
pp. 757-762
Author(s):  
M. Z. Nafikov ◽  
R. G. Akhmarov ◽  
I. R. Akhmet’yanov ◽  
I. I. Zagirov ◽  
R. F. Masyagutov ◽  
...  

2017 ◽  
Vol 44 (4) ◽  
pp. 74-79
Author(s):  
I.R. Shakirov ◽  
◽  
I.I. Zagirov ◽  
M.Z. Nafikov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document