Grain-boundary sliding and intergranular cavitation during superplastic deformation of α/β brass

1978 ◽  
Vol 13 (11) ◽  
pp. 2380-2384 ◽  
Author(s):  
T. Chandra ◽  
J. J. Jonas ◽  
D. M. R. Taplin
2007 ◽  
Vol 551-552 ◽  
pp. 199-202 ◽  
Author(s):  
Zhan Ling Zhang ◽  
Yong Ning Liu ◽  
Jie Wu Zhu ◽  
G. Yu

Ultrahigh carbon steel containing 1.6 wt pct C was processed to create microduplex structure consisting of fine-spheroidized carbides and fine ferrite grains. Elongation-to-failure tests were conducted at strain rates from 10-4s-1 to 15×10-4s-1, and at temperatures from 600 °C to 850 °C. The steel exhibited superplasticity at and above 700 °C when testing at a strain rate of 10-4s-1, and at 800 °C when testing at strain rates of 7×10-4s-1 and slower. The grains retained the equiaxed shape and initial size during deformation; dynamic grain growth was not observed after superplastic deformation, whereas carbide coarsening was observed. It is concluded that the fine ferrite grains or austensite grains are stabilized by the grain boundary carbides, and grain-boundary sliding controlled by grain boundary diffusion is the principal superplastic deformation mechanism at temperatures in the range of 700-850 °C.


2016 ◽  
Vol 838-839 ◽  
pp. 59-65 ◽  
Author(s):  
Hiroyuki Watanabe ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

Texture change during superplastic deformation was examined and compared in two magnesium alloys with different chemical composition. These alloys were extruded to refine the microstructure. The pre-existing basal texture of both alloys became slightly more random within the bulk probably owing to grain boundary sliding and the accompanying grain rotation. However, the texture changes differed between tensile and compressive deformation along the extrusion (longitudinal) direction. This fact suggests that dislocation slip is important in superplastic deformation. It was concluded that dislocation slip acts primarily as an accommodation mechanism for grain boundary sliding.


1996 ◽  
Vol 243-245 ◽  
pp. 109-114
Author(s):  
Norio Furushiro ◽  
T. Haruna ◽  
Toshiya Shibayanagi ◽  
U. Umakoshi ◽  
S. Hori

2016 ◽  
Vol 838-839 ◽  
pp. 256-260
Author(s):  
Takahiko Yano ◽  
Naoko Ikeo ◽  
Hiroyuki Watanabe ◽  
Toshiji Mukai

Superplastic deformation behavior was investigated for a dual-phase Mg-Ca alloy. The elongation-to-failure reached more than 120% with the strain rate sensitivity, m, over 0.4. The activation energy required for the deformation was estimated to be 98 kJ/mol which is close to the activation energy for grain boundary diffusion in magnesium. Therefore, the superplastic deformation mechanism was suggested to be the grain boundary sliding rate, which is controlled by boundary diffusion.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 941
Author(s):  
Guangyu Li ◽  
Hua Ding ◽  
Jian Wang ◽  
Ning Zhang ◽  
Hongliang Hou

The microstructural evolution of the Al–Zn–Mg–Cu alloy during the superplastic deformation process has been studied by high temperature tensile experiment. The superplastic deformation behaviors are investigated under different temperatures of 470 °C, 485 °C, 500 °C, 515 °C and 530 °C, and different strain rates of 3 × 10−4 s−1, 1 × 10−3 s−1, 3 × 10−2 s−1 and 1 × 10−2 s−1. The microstructure observation shows that uniform and equiaxed grains can be obtained by dynamic recrystallization in the initial stage of superplastic deformation. Once the recrystallization process has been finished, the variations of the fraction of high angle boundary, the grain aspect ratio and the Schmid factor are negligible during the superplastic deformation, which shows that the grain boundary sliding and grain rotation are the main deformation mechanisms. The maximum texture intensity decreases compared with the initial microstructure, indicating that grain boundary sliding and grain rotation can weaken the texture, however, the texture intensity increases in the final stage of superplastic deformation, which may be resulted from the stress concentration.


Sign in / Sign up

Export Citation Format

Share Document