Correlation analysis and strength of glass-reinforced plastic pipe

1972 ◽  
Vol 4 (4-6) ◽  
pp. 810-814
Author(s):  
I. P. Dimitrienko ◽  
N. S. Zueva ◽  
V. I. Suminov ◽  
V. I. Smyslov
Author(s):  
Jun Shi ◽  
Jing Rao ◽  
Jianfeng Shi ◽  
Ping Xu ◽  
Taiqing Shao ◽  
...  

A steel reinforced plastic pipe (PSP), which is composed of two layers of high density polyethylene (HDPE) matrix and a high strength steel wire mesh skeleton, has wide applications in many industrial areas, such as gas and petroleum transportation, etc. In order to achieve higher efficency and lower costs, a large diameter PSP has been developed. However, requirements of the large diameter PSP in safety and economy are much higher, compared with those small diameter PSPs, and some potential problems should be taken into account. In this paper, relevant structural parameters of the large diameter PSP are determined, based on a previously proposed model, and a short-term burst test is carried out. The experiment results agree with the theoretical results quite well. Subsequently, the resistance of vertical pressure and uniform external pressure are evaluated by using experiment investigation and finite element method, respectively. And corresponding results indicate the large diameter PSP with determined structural parameters is qualified to use.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2623 ◽  
Author(s):  
Yizheng Zhang ◽  
Yu’e Yang ◽  
Wenhao Du ◽  
Qing Han

Carbon fiber reinforced plastic (CFRP) laminated structures have been widely used in modern engineering due to their excellent material properties, especially in the aerospace and shipping industries. This requires a high-accuracy finite element model of CFRP laminated structures. However, it is difficult to master the mechanical properties of CFRP structures comprehensively and accurately due to influences from multiple aspects, such as dispersion of material properties, uncertainty of manufacturing technologies, etc. Therefore, a finite element model modification method of CFRP laminated structures based on correlation analysis and an approximate model was proposed. Aiming at minimizing the difference between the analysis model and the measured inherent frequency, the proposed method improves the finite element modeling accuracy of CFRP laminated structures, by iterative optimization based on a global optimization algorithm. In order to solve the problem of high spatial dimension and slow searching in modification of CFRP laminated structure models, the Pearson correlation analysis method was used to screen the material parameters which exert significant impacts on frequency characteristics to reconstruct the searching space. Based on significance parameters, an approximate response model of the CFRP laminated structural system was established. Meanwhile, the modeling accuracy of different orders of response surface models (RSM) and a radial basis function (RBF) neural network model was analyzed, and the best approximate modeling scheme was obtained. The approximate model was updated based on the multi-island genetic algorithm (MIGA) to modify the finite element model of the CFRP laminated structure model. The maximum error and mean error of the updated model are 1.47% and 0.45%. It was proved that the material parameters modified by the proposed method are applicable to simulation analysis of the CFRP laminated structure.


1991 ◽  
Vol 18 (4) ◽  
pp. 365-377 ◽  
Author(s):  
R. Kitching ◽  
R. Priester ◽  
H. Hashemizadeh ◽  
P.D. Soden

Author(s):  
Shu H. Liu ◽  
Ju Ding ◽  
Jian F. Zhang

Abstract With the development of material technology, non-metallic materials are applied to pressure pipes in petrochemical plant. Fiber reinforced plastic (FRP) is widely used because high mechanical strength and corrosion resistance. The non-metallic pipeline has been running for more than 20 years in petrochemical plant of China. Due to the fiber material anisotropy, it is difficult to measure thickness and detect defect by conventional ultrasonic method in FRP inspection. According to Chinese pressure pipeline inspection laws and regulations, the main inspection methods are macroscopic examination and hydraulic pressure test. The inspection of non-metallic pipelines has not been specified in detail. Compared with traditional radiographic detection, digital radiographic detection has better contrast and image processing technology, so digital radiographic detection has more advantages in thickness measurement and corrosion detection. Elbows are most prone to corrosion defects due to fluid erosion. In this paper, fiber reinforced plastic pipe is detected by digital radiographic technology. In digital radiographic detection, appropriate parameters and accurate measurement are proposed. The accurate wall thickness of the pipe is obtained and the internal defects are detected. By comparing the measurement results with the actual wall thickness, the measurement accuracy of digital radiographic detection could meet the requirement of ultrasonic thickness gauge in NB/T47013.3. Digital radiographic technology is strongly recommended for FRP pipeline periodic inspection.


Sign in / Sign up

Export Citation Format

Share Document