material technology
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 80)

H-INDEX

16
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Matthias Schneck ◽  
Max Horn ◽  
Maik Schindler ◽  
Christian Seidel

Additive Manufacturing (AM) allows the manufacturing of functionally graded materials (FGM). This includes compositional grading, which enables the allocation of desired materials corresponding to local product requirements. An upcoming AM process for the creation of metal-based FGMs is laser-based powder bed fusion (PBF-LB/M) utilized for multi-material manufacturing (MM). Three-dimensional multi-material approaches for PBF-LB/M are stated to have a manufacturing readiness level (MRL) of 4 to 5. In this paper, an advancement of multi-material technology is presented by realizing an industry-relevant complex part as a prototype made by PBF-LB/M. Hence, a multi-material injection nozzle consisting of tool steel and a copper alloy was manufactured in a continuous PBF-LB/M process. Single material regions showed qualities similar to the ones resulting from mono-material processes. A geometrically defined transition zone between the two materials was achieved that showed slightly higher porosity than mono-material regions. Nevertheless, defects such as porosity, cracks, and material cross-contamination were detected and must be overcome in further MM technology development.


Author(s):  
Hideo Suzuki ◽  
Shin Kurosawa ◽  
Stephen Marcella ◽  
Masaru Kanba ◽  
Yuichi Koretaka ◽  
...  

Abstract The application of AI will develop further in the area of material technology similarly to how the application has advanced in the pharmaceutical industry. In this article, we explain how AI is applied in the pharmaceutical industry and in the material sciences. First, we show the trends of AI in data analysis for the different areas of the pharmaceutical industry. Second, we explain how the new machine learning platform (AutoML), in particular, benefits this type of data analysis by describing supervised machine learning. If the target value is available to define, executing the supervised machine learning is feasible to solve the problem. In this case, Implementing an AutoML process is the simple solution to look for insight. Third, we provide and discuss an example of an output from analysis done using unsupervised machine learning such as topological data analysis (TDA) as a new approach. Finally, we explain that these successful examples of AI applications in pharma provide a potential roadmap of how they may be applied to the science of material informatics. Adding new data to the current data is almost always required. Achievements are observed in the area of life science because many databases are consolidated into one database. Thus, creating new data with appropriate definitions and expanding the amount of applicable data will help materials informatics evolve into a field with both higher quality and more robust analyses in the future.


2021 ◽  
Vol 2045 (1) ◽  
pp. 012031
Author(s):  
Y J Liu ◽  
J R Fang ◽  
Y W Kang ◽  
L Wang ◽  
X P An

Abstract For the purposes of simplifying the calculation task, adjusting production processes in time and solving the inconsistent requirements for carbon emissions, this paper investigates the calculation methods of carbon dioxide emissions from cement production, for example IPCC, WBCSD-CSI, MEE-CBMA, CNIS and BNU. Then a simplification and intuitive method is proposed. Based on the intuitive method, CO2 emission of 21 cement plants in China are calculated and analyzed, of which the error between the calculation results and those obtained by HJ 2519-2012 is less than 0.5%. About the carbon reduction technology in cement industry, there is limited reduction space that rely on energy efficiency improvements and clinker substitution. The technology of alternative fuels still needs to be further expanded. China has operated the first demonstration production line of CCUS technology at the Anhui Baimashan Conch cement plant with a capacity of 20,000 tons/year of industrial-grade liquid CO2 products and 30,000 tons/year of food-grade liquid CO2 products. Alternative raw material technology may be one developing direction to cut carbon emission; only 6.18% of steel slag was added to the raw meal at a 2500t/d production line, CO2 emission from process emissions were reduced by nearly 10%.


Author(s):  
Dionysios Tompros ◽  
Dionysios E Mouzakis

The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.


2021 ◽  
Vol 11 (16) ◽  
pp. 7514
Author(s):  
Elmira Jamei ◽  
Zora Vrcelj

The growing interest in biomimicry in built environments highlights the awareness raised among designers on the potentials nature offers to human and system function improvements. Biomimicry has been widely utilized in advanced material technology. However, its potential in sustainable architecture and construction has yet to be discussed in depth. Thus, this study offers a comprehensive review of the use of biomimicry in architecture and structural engineering. It also reviews the methods in which biomimicry assists in achieving efficient, sustainable built environments. The first part of this review paper introduces the concept of biomimicry historically and practically, discusses the use of biomimicry in design and architecture, provides a comprehensive overview of the potential and benefits of biomimicry in architecture, and explores how biomimicry can be utilized in building envelops. Then, in the second part, the integration of biomimicry in structural engineering and construction is thoroughly explained through several case studies. Finally, biomimicry in architectural and structural design of built environments in creating climate-sensitive and energy-efficient design is explained.


2021 ◽  
Author(s):  
Ting C. Roy ◽  
Daniel Markel ◽  
Casey Harrison ◽  
James Shelton ◽  
Leonard Harp ◽  
...  

Abstract Strengthening materials through grain refinement often results in reduced ductility necessitating means to augment their elongation to failure for engineering applications. Grain boundary engineering (GBE), encompassing novel thermo-mechanical processing has shown promise of simultaneously enhancing both strength and ductility of materials and fracture behavior, especially with low stacking fault energy materials. The ultrahigh strength and reasonable ductility originate from dislocations being effectively blocked at the nano-twinned boundaries resulting in dislocation accumulation and entanglement. This necessitates the careful design of alloys and nano-composites, an effective harnessing of these unique sub-micron features to the benefit of engineering downhole tools for strategic applications. Enabled by these novel material developments, here we present two such articles for the unconventionals. First, a frangible barrier to abet placement of casings and liners through trapping an air column below the barrier while supporting a fluid column in the casing above, providing an up-thrust, a buoyant force that significantly reduces drag and lateral casing weight during placement. This is a viable concept because "shales don't kick". Second is the unmet need for a clean perforating tunnel allowing reduced fluid friction thus better reservoir connectivity. This has been achieved through the development of a novel shape charge with a reactive liner which during the detonation event, additionally generates reactive metallic glassy phase(s) and high entropy alloy complex(s) and their segregation in the deposited jet debris that lines the perf-tunnel. During flowback, reaction with aqueous fluids selectively etch these phases and stimulates the disintegration of the impervious skin on the perf-tunnel into fine particulates subsequently removing them, leaving behind a clear, clean tunnel.


2021 ◽  
Author(s):  
Eduardo Valente Oazen ◽  
Lionel Nelson Macauley ◽  
Otávio Borges Sertã ◽  
Christopher Tsi Fen Siu

Abstract Brazilian Pre-salts fields lie in approximately 2200 m w.d. in a challenging environment and are often characterized by highly corrosive produced fluids that pushed to the extreme the application of the most advanced material technology and engineering. Nevertheless, Lula, Sapinhoá, Mero and Búzios are definitively world-class prospects with production rates that may exceed 30.000 barrels per day per well. The development scheme of the Pre-salt fields followed the experience and the track record of the large number of deepwater fields that were previously developed in Brazil, in the post-salt regions, and is based on satellite wells tied to the floating production platform by means of dedicated production and service risers (i.e. each well has dedicated production and service lines). This satellite configuration offers the advantage to be simple, straightforward and resilient to field layout changes even during the project execution phase. However, the continuous pressure to which the Oil & Gas industry is exposed in order to increase profitability, reduce cost and, more recently, green house gas emission is encouraging Operators to evaluate different field architectures that are more traditionally implemented in other deepwater provinces outside Brazil and that the recent technology and construction asset developments made suitable also for a potential application in the Pre-salt fields. Moreover, those field architectures that are normally based on commingling of wells production are also prone to provide a faster production ramp-up and a reduced time to break even. This paper presents a description of possible Daisy Chain and Manifold-Based subsea architectures that are suitable to be applied to Brazilian pre-salt fields. The pros and cons of these alternative subsea layouts are explored. Additionally, cost and schedule analyses are presented to show the benefits of such architecture regarding CAPEX and ramp-up compared to satellite architecture, considering the "Brazilian pre-salt" scenario. Finally, a generic proposal for subsea architecture is presented for pre-salt developments jointly with practical solutions for typical operation demands related to flow assurance issues like, for instance, wax and hydrate management.


Author(s):  
Nguyen Van Men

It is well-known that material technology is considered as one of the scientific fields attracting a lot of attention from scientists. Recently, graphene, a perfect two-dimensional structure, has attracted a large amount of interest from researchers due to its unique properties and possible applications in a variety of technological fields. The dispersion relations in graphene demonstrate that this material can be used to create plasmonic devices with potentially more features and less energy consumption than recent semiconductors. This paper calculates the dispersion relations in a bilayer graphene structure at finite temperatures using the random-phase approximation. The numerical results show that as temperature increases from zero, the plasmon frequency decreases slightly near the Dirac points and then increases noticeably. In large wave vector regions, the plasmon frequency behaves as an increasing function of temperature. The contribution of carrier density to plasmon frequency in the bilayer graphene system diminishes when temperature effects are taken into account. We observed that temperature significantly affects the dispersion relations in bilayer graphene systems; therefore, this factor should not be neglected in efforts to improve models or in comparisons with experimental results.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4386
Author(s):  
Muhammad Syahmi Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Muhamad Safwan Abd Rahman ◽  
Miszaina Osman ◽  
Shamsul Fahmi Mohd Nor ◽  
...  

The advancement of material technology has contributed to the variation of high-performance composites with good electrical insulation and mechanical properties. Their usage in electrical applications has grown since then. In Malaysia, the composite made of Glass Fiber Reinforced Polymer (GFRP) has been adopted for crossarm manufacturing and has successfully served 275 kV lines for a few decades. However, the combination of extreme conditions such as lightning transient and tropical climate can impose threats to the material. These issues have become major topics of discussion among the utilities in the Southeast Asian (SEA) region, and also in previous research. In Malaysia, more than 50% of total interruptions were caused by lightning. Limited studies can be found on the composite crossarm, especially on the square tube GFRP filled crossarm used in Malaysia. Therefore, this paper proposes to study the behavior of the particular GFRP crossarm, by means of its insulation characteristics. Experimental and simulation approaches are used. Throughout the study, the GFRP specimen is known to have an average breakdown strength at 7.2 kV/mm. In addition, the CFO voltages of the crossarm at different lengths are presented, whereby the behavior under dry and wet conditions is comparably discussed. At the same time, the polarity effect on the CFO voltages is highlighted. The maximum E-fields at the immediate moment before breakdown are analyzed by adopting the finite element method (FEM). Non-uniform distribution of E-fields is witnessed at different parts of the crossarm structure. Simultaneously, the maximum field localized on the crossarm immediately before the breakdown is also presented.


Sign in / Sign up

Export Citation Format

Share Document