Investigation of organized structures in the near-wall turbulent boundary layer zone on a plastically deformable surface

1989 ◽  
Vol 29 (5) ◽  
pp. 661-668 ◽  
Author(s):  
O. A. Likhachev
2019 ◽  
Vol 36 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Xiaotong Cui ◽  
Nan Jiang ◽  
Xiaobo Zheng ◽  
Zhanqi Tang

Abstract This study experimentally investigates the impact of a single piezoelectric (PZT) actuator on a turbulent boundary layer from a statistical viewpoint. The working conditions of the actuator include a range of frequencies and amplitudes. The streamwise velocity signals in the turbulent boundary layer flow are measured downstream of the actuator using a hot-wire anemometer. The mean velocity profiles and other basic parameters are reported. Spectra results obtained by discrete wavelet decomposition indicate that the PZT vibration primarily influences the near-wall region. The turbulent intensities at different scales suggest that the actuator redistributes the near-wall turbulent energy. The skewness and flatness distributions show that the actuator effectively alters the sweep events and reduces intermittency at smaller scales. Moreover, under the impact of the PZT actuator, the symmetry of vibration scales’ velocity signals is promoted and the structural composition appears in an orderly manner. Probability distribution function results indicate that perturbation causes the fluctuations in vibration scales and smaller scales with high intensity and low intermittency. Based on the flatness factor, the bursting process is also detected. The vibrations reduce the relative intensities of the burst events, indicating that the streamwise vortices in the buffer layer experience direct interference due to the PZT control.


2011 ◽  
Vol 677 ◽  
pp. 179-203 ◽  
Author(s):  
I. JACOBI ◽  
B. J. McKEON

The zero-pressure-gradient turbulent boundary layer over a flat plate was perturbed by a short strip of two-dimensional roughness elements, and the downstream response of the flow field was interrogated by hot-wire anemometry and particle image velocimetry. Two internal layers, marking the two transitions between rough and smooth boundary conditions, are shown to represent the edges of a ‘stress bore’ in the flow field. New scalings, based on the mean velocity gradient and the third moment of the streamwise fluctuating velocity component, are used to identify this ‘stress bore’ as the region of influence of the roughness impulse. Spectral composite maps reveal the redistribution of spectral energy by the impulsive perturbation – in particular, the region of the near-wall peak was reached by use of a single hot wire in order to identify the significant changes to the near-wall cycle. In addition, analysis of the distribution of vortex cores shows a distinct structural change in the flow associated with the perturbation. A short spatially impulsive patch of roughness is shown to provide a vehicle for modifying a large portion of the downstream flow field in a controlled and persistent way.


1994 ◽  
Vol 6 (1) ◽  
pp. 430-432 ◽  
Author(s):  
R. A. Antonia ◽  
P. R. Spalart ◽  
P. Mariani

2001 ◽  
Vol 124 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Robert O. Kiesow ◽  
Michael W. Plesniak

The near-wall physics of a planar, shear-driven, 3-D turbulent boundary layer with varying strengths of crossflow are examined. Flow visualization data reveals a reduction of mean streak length by as much as 50% with increasing spanwise shear. Power spectra of velocity confirm this shift towards higher temporal frequencies, corresponding to decreased streamwise length scales. PIV measurements indicate a significant modification of the inner region of the boundary layer with increasing spanwise shear. Streamwise velocity profiles exhibit an increasing velocity deficit with increased crossflow. Increased levels of the normal Reynolds stresses u′2¯ and v′2¯ and an increase in the −u′v′¯ Reynolds shear stress are also observed. Modifications in the spanwise and transverse vorticity were also observed at higher shear rates.


2007 ◽  
Vol 586 ◽  
pp. 371-396 ◽  
Author(s):  
MASAHITO ASAI ◽  
YASUFUMI KONISHI ◽  
YUKI OIZUMI ◽  
MICHIO NISHIOKA

Two-dimensional local wall suction is applied to a fully developed turbulent boundary layer such that near-wall turbulence structures are completely sucked out, but most of the turbulent vortices in the original outer layer can survive the suction and cause the resulting laminar flow to undergo re-transition. This enables us to observe and clarify the whole process by which the suction-surviving strong vortical motions give rise to near-wall low-speed streaks and eventually generate wall turbulence. Hot-wire and particle image velocimetry (PIV) measurements show that low-frequency velocity fluctuations, which are markedly suppressed near the wall by the local wall suction, soon start to grow downstream of the suction. The growth of low-frequency fluctuations is algebraic. This characterizes the streak growth caused by the suction-surviving turbulent vortices. The low-speed streaks obtain almost the same spanwise spacing as that of the original turbulent boundary layer without the suction even in the initial stage of the streak development. This indicates that the suction-surviving turbulent vortices are efficient in exciting the necessary ingredients for the wall turbulence, namely, low-speed streaks of the correct scale. After attaining near-saturation, the low-speed streaks soon undergo sinuous instability to lead to re-transition. Flow visualization shows that the streak instability and its subsequent breakdown occur at random in space and time in spite of the spanwise arrangement of streaks being almost periodic. Even under the high-intensity turbulence conditions, the sinuous instability amplifies disturbances of almost the same wavelength as predicted from the linear stability theory, though the actual growth is in the form of a wave packet with not more than two waves. It should be emphasized that the mean velocity develops the log-law profile as the streak breakdown proceeds. The transient growth and eventual breakdown of low-speed streaks are also discussed in connection with the critical condition for the wall-turbulence generation.


Sign in / Sign up

Export Citation Format

Share Document