Numerical analysis of the nonlinear deformation of a spherical pressure vessel made of laminated glass-plastic

1987 ◽  
Vol 23 (11) ◽  
pp. 1033-1037
Author(s):  
Ya. M. Grigorenko ◽  
A. T. Vasilenko ◽  
N. N. Kryukov ◽  
T. V. Krizhanovskaya
2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Tetsuaki Takeda

When a depressurization accident of a very-high-temperature reactor (VHTR) occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Experiment and numerical analysis using a three-dimensional (3D) computational fluid dynamics code have been carried out to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. One sidewall of the high-temperature side vertical passage is heated, and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. The result obtained from the 3D numerical analysis was in agreement with the experimental result quantitatively. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


Author(s):  
Ali Nayebi ◽  
Azam Surmiri ◽  
Hojjatollah Rokhgireh

In cyclic loading and when plastic flow occurs, discontinuities grow. In this research, interaction diagram of Bree has been developed when the spherical pressure vessel contains discontinuities such as voids and microcracks. Bree’s diagram is used for ratcheting assessment of pressurized equipment in ASME III NH. Nature of these defects leads to an anisotropic damage. Anisotropic Continuum Damage Mechanics (CDM) is considered to account effects of these discontinuities on the behavior of the structure. Shakedown – ratcheting response of a hollow sphere under constant internal pressure and cyclic thermal loadings are studied by using anisotropic CDM theory coupled with nonlinear kinematic hardening of Armstrong-Frederick m’s model (A-F). Return mapping method is used to solve numerically the developed relations. Elastic, elastic shakedown, plastic shakedown and ratcheting regions are illustrated in the modified Bree’s diagram. Influence of anisotropic damage due to the plastic deformation is studied and it was shown that the plastic shakedown region is diminished because of the developed damage.


Author(s):  
M. Perl

The equivalent thermal load was previously shown to be the only feasible method by which the residual stresses due to autofrettage and its redistribution, as a result of cracking, can be implemented in a finite element analysis, of a fully or partially autofrettaged thick-walled cylindrical pressure vessel. The present analysis involves developing a similar methodology for treating an autofrettaged thick-walled spherical pressure vessel. A general procedure for evaluating the equivalent temperature loading for simulating an arbitrary, analytical or numerical, spherosymmetric autofrettage residual stress field in a spherical pressure vessel is developed. Once presented, the algorithm is applied to two distinct cases. In the first case, an analytical expression for the equivalent thermal loading is obtained for the ideal autofrettage stress field in a spherical shell. In the second case, the algorithm is applied to the discrete numerical values of a realistic autofrettage residual stress field incorporating the Bauschinger effect. As a result, a discrete equivalent temperature field is obtained. Furthermore, a finite element analysis is performed for each of the above cases, applying the respective temperature field to the spherical vessel. The induced stress fields are evaluated for each case and then compared to the original stress. The finite element results prove that the proposed procedure yields equivalent temperature fields that in turn simulate very accurately the residual stress fields for both the ideal and the realistic autofrettage cases.


Author(s):  
Naoto Yanagawa ◽  
Masashi Nomura ◽  
Tetsuaki Takeda ◽  
Shumpei Funatani

This study is to investigate a control method of the natural circulation of the air by the injection of helium gas. A depressurization is the one of the design-basis accidents of a Very High Temperature Reactor (VHTR). When the primary pipe rupture accident occurs in the VHTR, the air is predicted to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Finally, it seems to be probable that the natural circulation flow of the air in the reactor pressure vessel produce continuously. In order to predict or analyze the air ingress phenomenon during the depressurization accident of the VHTR, it is important to develop the method for prevention of air ingress during the accident. In this study, the air ingress process is discussed by comparing the experimental and analytical results of the reverse U-shaped channel which has parallel channels. The experiment of the natural circulation using a circular tube consisted of the reverse U-shaped type has been carried out. The vertical channel is consisted of the one side heated and the other side cooled pipe. The experimental apparatus is filled with the air and one side vertical tube is heated. A very small amount of helium gas is injected from the top of the channel. The velocity and the mole fraction of each gas are also calculated by using heat and mass transfer numerical analysis of multi-component gas. The result shows that the numerical analysis is considered to be well simulated the experiment. The natural circulation of the air has very weak velocity after the injection of helium gas. About 780 seconds later, the natural circulation suddenly produces. The natural circulation flow of the air can be controlled by the method of helium gas injection. The mechanism of the phenomenon is found that mole fraction is changed by the molecular diffusion and the very weak circulation.


2011 ◽  
Vol 314-316 ◽  
pp. 1146-1149
Author(s):  
Jian Hua Cui

According to high strain gradients characteristic at the junction between pressure vessel and nozzle, based on simulating shape plate of pressure vessel nozzle, weak-conforming element models are established for two types of special shape plates, which satisfied weak continuous conditions between elements. The weak-conforming element methods do not need satisfy stress equilibrium conditions. It can solve the conventional finite element difficult to adapt to the singularity of the field. The stresses are obtained by means of weak-conforming element method. The calculation results are in accordance with those of experiment results. This paper provides the foundation for the design of special shape plates and analysis of extending crack.


Sign in / Sign up

Export Citation Format

Share Document