Axially symmetric problem of the impact of a rigid body onto a thin elastic plate lying on the surface of a compressible liquid

1991 ◽  
Vol 27 (5) ◽  
pp. 489-496
Author(s):  
V. D. Kubenko ◽  
V. V. Gavrilenko
1989 ◽  
Vol 56 (4) ◽  
pp. 887-892 ◽  
Author(s):  
A. K. Banerjee ◽  
T. R. Kane

Equations of motion are formulated for a thin elastic plate that is executing small motions relative to a reference frame undergoing large rigid body motions (three-dimensional rotation and translation) in a Newtonian reference frame. As an illustrative example, a spin-up maneuver for a simply-supported rectangular plate is examined, and the vibration modes of such a plate are used to show that the present theory captures the phenomenon of dynamic stiffening.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ammar Ali Abd ◽  
Samah Zaki Naji ◽  
Ching Thian Tye ◽  
Mohd Roslee Othman

Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.


1996 ◽  
Vol 79 (4) ◽  
pp. 1191-1202
Author(s):  
A. S. Blagoveshchenskii

2009 ◽  
Vol 409 ◽  
pp. 154-160 ◽  
Author(s):  
Petr Frantík ◽  
Zbyněk Keršner ◽  
Václav Veselý ◽  
Ladislav Řoutil

The paper is focussed on numerical simulations of the fracture of a quasi-brittle specimen due to its impact onto a fixed rigid elastic plate. The failure of the specimen after the impact is modelled in two ways based on the physical discretization of continuum: via physical discrete elements and pseudo-particles. Advantages and drawbacks of both used methods are discussed. The size distribution of the fragments of the broken specimen resulting from physical discrete element model simulation follows a power law, which indicates the ability of the numerical model to identify the fractal nature of the fracture. The pseudo-particle model, on the other side, can successfully predict the kinematics of the fragments of the specimen under impact failure.


Sign in / Sign up

Export Citation Format

Share Document