Symmetry and separation of variables in Hamilton-Jacobi equations. I

1978 ◽  
Vol 21 (9) ◽  
pp. 1124-1129 ◽  
Author(s):  
V. N. Shapovalov
1978 ◽  
Vol 21 (9) ◽  
pp. 1130-1132 ◽  
Author(s):  
V. N. Shapovalov

2016 ◽  
Vol 31 (06) ◽  
pp. 1650027 ◽  
Author(s):  
Konstantin Osetrin ◽  
Altair Filippov ◽  
Evgeny Osetrin

The characteristics of dust matter in spacetime models, admitting the existence of privilege coordinate systems are given, where the single-particle Hamilton–Jacobi equation can be integrated by the method of complete separation of variables. The resulting functional form of the 4-velocity field and energy density of matter for all types of spaces under consideration is presented.


2020 ◽  
Vol 13 (1) ◽  
pp. 59-65

This manuscript aims to resolve the Hamilton-Jacobi equations in an electromagnetic field by two methods. The first uses the separation of variables technique with Staeckel boundary conditions, whereas the second uses the Newtonian formalism to solve the same example. Our results demonstrate that the Hamilton-Jacobi variables can be completely detached by using separation of variables technique with Staeckel boundary conditions that correspond to other results using Newtonian formalism.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


2011 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Ivan Gavrilyuk ◽  
Boris Khoromskij ◽  
Eugene Tyrtyshnikov

Abstract In the recent years, multidimensional numerical simulations with tensor-structured data formats have been recognized as the basic concept for breaking the "curse of dimensionality". Modern applications of tensor methods include the challenging high-dimensional problems of material sciences, bio-science, stochastic modeling, signal processing, machine learning, and data mining, financial mathematics, etc. The guiding principle of the tensor methods is an approximation of multivariate functions and operators with some separation of variables to keep the computational process in a low parametric tensor-structured manifold. Tensors structures had been wildly used as models of data and discussed in the contexts of differential geometry, mechanics, algebraic geometry, data analysis etc. before tensor methods recently have penetrated into numerical computations. On the one hand, the existing tensor representation formats remained to be of a limited use in many high-dimensional problems because of lack of sufficiently reliable and fast software. On the other hand, for moderate dimensional problems (e.g. in "ab-initio" quantum chemistry) as well as for selected model problems of very high dimensions, the application of traditional canonical and Tucker formats in combination with the ideas of multilevel methods has led to the new efficient algorithms. The recent progress in tensor numerical methods is achieved with new representation formats now known as "tensor-train representations" and "hierarchical Tucker representations". Note that the formats themselves could have been picked up earlier in the literature on the modeling of quantum systems. Until 2009 they lived in a closed world of those quantum theory publications and never trespassed the territory of numerical analysis. The tremendous progress during the very recent years shows the new tensor tools in various applications and in the development of these tools and study of their approximation and algebraic properties. This special issue treats tensors as a base for efficient numerical algorithms in various modern applications and with special emphases on the new representation formats.


Sign in / Sign up

Export Citation Format

Share Document