The inhibitory domain in the Oct-2 transcription factor represses gene activity in a cell type-specific and promoter-independent manner

1995 ◽  
Vol 21 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Karen A. Lillycrop ◽  
David S. Latchman
1999 ◽  
Vol 274 (38) ◽  
pp. 26661-26667 ◽  
Author(s):  
Jianping Ye ◽  
Howard A. Young ◽  
Xiaoying Zhang ◽  
Vince Castranova ◽  
Val Vallyathan ◽  
...  

1995 ◽  
Vol 15 (5) ◽  
pp. 2849-2857 ◽  
Author(s):  
A P Bradford ◽  
K E Conrad ◽  
C Wasylyk ◽  
B Wasylyk ◽  
A Gutierrez-Hartmann

The mechanism by which activation of common signal transduction pathways can elicit cell-specific responses remains an important question in biology. To elucidate the molecular mechanism by which the Ras signaling pathway activates a cell-type-specific gene, we have used the pituitary-specific rat prolactin (rPRL) promoter as a target of oncogenic Ras and Raf in GH4 rat pituitary cells. Here we show that expression of either c-Ets-1 or the POU homeo-domain transcription factor GHF-1/Pit-1 enhance the Ras/Raf activation of the rPRL promoter and that coexpression of the two transcription factors results in an even greater synergistic Ras response. By contrast, the related GHF-1-dependent rat growth hormone promoter fails to respond to Ras or Raf, indicating that GHF-1 alone is insufficient to mediate the Ras/Raf effect. Using amino-terminal truncations of c-Ets-1, we have mapped the c-Ets-1 region required to mediate the optimal Ras response to a 40-amino-acid segment which contains a putative mitogen-activated protein kinase site. Finally, dominant-negative Ets and GHF constructs block Ras activation of the rPRL promoter, and each blocks the synergistic activation mediated by the other partner protein, further corroborating that a functional interaction between c-Ets-1 and GHF-1 is required for an optimal Ras response. Thus, the functional interaction of a pituitary-specific transcription factor, GHF-1, with a widely expressed nuclear proto-oncogene product, c-Ets-1, provides one important molecular mechanism by which the general Ras signaling cascade can be interpreted in a cell-type-specific manner.


Development ◽  
2021 ◽  
Author(s):  
Karolina Mizeracka ◽  
Julia M. Rogers ◽  
Jonathan D. Rumley ◽  
Shai Shaham ◽  
Martha L. Bulyk ◽  
...  

During convergent differentiation, multiple developmental lineages produce a highly similar or identical cell type. However, few molecular players that drive convergent differentiation are known. Here, we show that the C. elegans Forkhead transcription factor UNC-130 is required in only one of three convergent lineages that produce the same glial cell type. UNC-130 acts transiently as a repressor in progenitors and newly-born terminal cells to allow the proper specification of cells related by lineage rather than by cell type or function. Specification defects correlate with UNC-130:DNA binding, and UNC-130 can be functionally replaced by its human homolog, the neural crest lineage determinant FoxD3. We propose that, in contrast to terminal selectors that activate cell-type specific transcriptional programs in terminally differentiating cells, UNC-130 acts early and specifically in one convergent lineage to produce a cell type that also arises from molecularly distinct progenitors in other lineages.


2017 ◽  
Vol 55 (05) ◽  
pp. e28-e56
Author(s):  
S Macheiner ◽  
R Gerner ◽  
A Pfister ◽  
A Moschen ◽  
H Tilg

2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document