scholarly journals Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain.

1995 ◽  
Vol 15 (5) ◽  
pp. 2849-2857 ◽  
Author(s):  
A P Bradford ◽  
K E Conrad ◽  
C Wasylyk ◽  
B Wasylyk ◽  
A Gutierrez-Hartmann

The mechanism by which activation of common signal transduction pathways can elicit cell-specific responses remains an important question in biology. To elucidate the molecular mechanism by which the Ras signaling pathway activates a cell-type-specific gene, we have used the pituitary-specific rat prolactin (rPRL) promoter as a target of oncogenic Ras and Raf in GH4 rat pituitary cells. Here we show that expression of either c-Ets-1 or the POU homeo-domain transcription factor GHF-1/Pit-1 enhance the Ras/Raf activation of the rPRL promoter and that coexpression of the two transcription factors results in an even greater synergistic Ras response. By contrast, the related GHF-1-dependent rat growth hormone promoter fails to respond to Ras or Raf, indicating that GHF-1 alone is insufficient to mediate the Ras/Raf effect. Using amino-terminal truncations of c-Ets-1, we have mapped the c-Ets-1 region required to mediate the optimal Ras response to a 40-amino-acid segment which contains a putative mitogen-activated protein kinase site. Finally, dominant-negative Ets and GHF constructs block Ras activation of the rPRL promoter, and each blocks the synergistic activation mediated by the other partner protein, further corroborating that a functional interaction between c-Ets-1 and GHF-1 is required for an optimal Ras response. Thus, the functional interaction of a pituitary-specific transcription factor, GHF-1, with a widely expressed nuclear proto-oncogene product, c-Ets-1, provides one important molecular mechanism by which the general Ras signaling cascade can be interpreted in a cell-type-specific manner.

2019 ◽  
Author(s):  
Igor Mačinković ◽  
Ina Theofel ◽  
Tim Hundertmark ◽  
Kristina Kovač ◽  
Stephan Awe ◽  
...  

Abstract CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


2010 ◽  
Vol 62 (7) ◽  
pp. 421-429 ◽  
Author(s):  
Naomi Shimokawa ◽  
Chiharu Nishiyama ◽  
Nobuhiro Nakano ◽  
Keiko Maeda ◽  
Ryuyo Suzuki ◽  
...  

1999 ◽  
Vol 274 (38) ◽  
pp. 26661-26667 ◽  
Author(s):  
Jianping Ye ◽  
Howard A. Young ◽  
Xiaoying Zhang ◽  
Vince Castranova ◽  
Val Vallyathan ◽  
...  

2006 ◽  
Vol 5 (11) ◽  
pp. 1925-1933 ◽  
Author(s):  
Nobuyuki Morohashi ◽  
Yuichi Yamamoto ◽  
Shunsuke Kuwana ◽  
Wataru Morita ◽  
Heisaburo Shindo ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, a-cell-specific genes are repressed in MATα cells by α2/Mcm1, acting in concert with the Ssn6-Tup1 corepressors and the Isw2 chromatin remodeling complex, and nucleosome positioning has been proposed as one mechanism of repression. However, prior studies showed that nucleosome positioning is not essential for repression by α2/Mcm1 in artificial reporter plasmids, and the importance of the nucleosome positioning remains questionable. We have tested the function of positioned nucleosomes through alteration of genomic chromatin at the a-cell-specific gene BAR1. We report here that a positioned nucleosome in the BAR1 promoter is disrupted in cis by the insertion of diverse DNA sequences such as poly(dA) · poly(dT) and poly(dC-dG) · poly(dC-dG), leading to inappropriate partial derepression of BAR1. Also, we show that isw2 mutation causes loss of nucleosome positioning in BAR1 in MATα cells as well as partial disruption of repression. Thus, nucleosome positioning is required for full repression, but loss of nucleosome positioning is not sufficient to relieve repression completely. Even though disruption of nucleosome positioning by the cis- and trans-acting modulators of chromatin has a modest effect on the level of transcription, it causes significant degradation of the α-mating pheromone in MATα cells, thereby affecting its cell type identity. Our results illustrate a useful paradigm for analysis of chromatin structural effects at genomic loci.


Nanoscale ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 933-943 ◽  
Author(s):  
Moonhwan Choi ◽  
Haeyoon Jeong ◽  
Sol Kim ◽  
Minkyung Kim ◽  
Minhyung Lee ◽  
...  

Cell-type-specific genes involved in disease can be effective therapeutic targets; therefore, the development of a cell-type-specific gene delivery system is essential.


2019 ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific CNS cell types. Paired analysis of the transcriptome and DNA modifications in astrocytes and microglia demonstrates differential usage of DNA methylation and hydroxymethylation in CG and non-CG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any CNS cell type for which a cell type-specific cre is available.


Sign in / Sign up

Export Citation Format

Share Document