sp1 transcription factor
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 18)

H-INDEX

35
(FIVE YEARS 2)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1371
Author(s):  
Kuen-Lin Wu ◽  
Ko-Chao Lee ◽  
Chia-Kuang Yen ◽  
Cheng-Nan Chen ◽  
Shun-Fu Chang ◽  
...  

Colorectal cancer (CRC) is a highly lethal malignant cancer. Capecitabine, a 5-fluororacil (5-FU) derivate, is its first-line drug, but the resistance of CRC to capecitabine is still the most challenging factor for curing patients. It has been suggested that thymidylate synthase (TYMS) level might affect the capecitabine efficacy in CRC patients, but the mechanism still needs more elucidation. Obesity is a risk factor for CRC. Recently, a correlation between serum visfatin, an obesity-elicited adipokine, and CRC development has been found. Thus, the aim of present study is to examine the visfatin capacity in TYMS expression and in the development of capecitabine resistance of CRC. Moreover, an attractive natural component, i.e., resveratrol, has been proposed in anticancer therapy and has hence been examined in the present study to see its potential capacity in the alleviation of CRC resistance. Our results found that visfatin significantly reduces the CRC sensitivity to capecitabine by controlling the TYMS expression via p38 signaling and Sp1 transcription factor. Moreover, resveratrol could significantly alleviate the visfatin effect on capecitabine-treated CRC cells. These results provided new insights to understand the capecitabine susceptibility of CRC under a visfatin-containing environment and a possible therapeutic application of resveratrol in CRC patients with obesity.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1586
Author(s):  
Zhengchang Wu ◽  
Dongfeng Shi ◽  
Jian Jin ◽  
Hairui Fan ◽  
Wenbin Bao ◽  
...  

Post-weaning diarrhea (PWD) is frequently associated with E. coli F18 infections in piglets. However, the underlying molecular mechanism concerning the resistance of E. coli F18 in local weaned piglets in China is not clearly understood. In the present study, by a comparative analysis of the transcriptome, a-1,3-fucosyltransferase (FUT3) was evaluated as a key candidate correlated with resistance to E. coli F18 in Sutai and Meishan piglets. Functional analysis demonstrated that FUT3 acts as a key positive regulator of E. coli F18 susceptibility in newly food accustomed piglets. However, the core promoter of FUT3 was present at −500–(−206) bp (chr.2: g.73171117–g.73171616), comprising of 9 methylated CpG sites. Among these, the methylation levels of the two CpG sites (mC-3, mC-5) located in HIF1A and Sp1 transcription factor (TF) considerably associated with mRNA expression of FUT3 (p < 0.05). Our findings indicated that the methylation of mC-3 and mC-5 sites has certain inhibitory effect on FUT3 expression and promotes the resistance of E. coli F18 in piglets. The underlined study may explore FUT3 as a new candidate target in E. coli F18 infection in Chinese local weaned piglets.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Xuexiu Zhang ◽  
Jianning Yao ◽  
Haoling Shi ◽  
Bing Gao ◽  
Haining Zhou ◽  
...  

AbstractCircular RNAs (circRNAs) have been reported to play crucial roles in the progression of various cancers, including colorectal cancer (CRC). SP1 (Sp1 transcription factor) is a well-recognized oncogene in CRC and is deemed to trigger the Wnt/β-catenin pathway. The present study was designed to investigate the role of circRNAs which shared the same pre-mRNA with SP1 in CRC cells. We identified that hsa_circ_0026628 (circ_0026628), a circular RNA that originated from SP1 pre-mRNA, was upregulated in CRC cells. Sanger sequencing and agarose gel electrophoresis verified the circular characteristic of circ_0026628. Functional assays including CCK-8, colony formation, transwell, immunofluorescence staining, and sphere formation assay revealed the function of circ_0026628. RNA pull-down and mass spectrometry disclosed the proteins interacting with circ_0026628. Mechanistic assays including RIP, RNA pull-down, CoIP, ChIP, and luciferase reporter assays demonstrated the interplays between molecules. The results depicted that circ_0026628 functioned as a contributor to CRC cell proliferation, migration, EMT, and stemness. Mechanistically, circ_0026628 served as the endogenous sponge of miR-346 and FUS to elevate SP1 expression at the post-transcriptional level, thus strengthening the interaction between SP1 and β-catenin to activate the Wnt/β-catenin pathway. In turn, the downstream gene of Wnt/β-catenin signaling, SOX2 (SRY-box transcription factor 2), transcriptionally activated SP1 and therefore boosted circ_0026628 level. On the whole, SOX2-induced circ_0026628 sponged miR-346 and recruited FUS protein to augment SP1, triggering the downstream Wnt/β-catenin pathway to facilitate CRC progression.


Author(s):  
Ji-Hwan Park ◽  
Sung Jin Ryu ◽  
Byung Ju Kim ◽  
Hyun-Ji Cho ◽  
Chi Hyun Park ◽  
...  

AbstractSenescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.


Author(s):  
Yu-Cheng Wang ◽  
Xiaohan Yao ◽  
Mei Ma ◽  
Huihui Zhang ◽  
Hui Wang ◽  
...  

Abstract Muscle regeneration after damage or during myopathies requires a fine cooperation between myoblast proliferation and myogenic differentiation. A growing body of evidence suggests that microRNAs play critical roles in myocyte proliferation and differentiation transcriptionally. However, the molecular mechanisms underlying the orchestration are not fully understood. Here, we showed that miR-130b is able to repress myoblast proliferation and promote myogenic differentiation via targeting Sp1 transcription factor. Importantly, overexpression of miR-130b is capable of improving the recovery of damaged muscle in a freeze injury model. Moreover, miR-130b expression is declined in the muscle of muscular dystrophy patients. Thus, these results indicated that miR-130b may play a role in skeletal muscle regeneration and myopathy progression. Together, our findings suggest that the miR-130b/Sp1 axis may serve as a potential therapeutic target for the treatment of patients with muscle damage or severe myopathies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huaiyun Tang ◽  
Linqing Pan ◽  
Yun Xiong ◽  
Leilei Wang ◽  
Yugui Cui ◽  
...  

Abstract Background The pathophysiological mechanism of recurrent miscarriage (RM) is unclear. The goals of this study were to determine the role of microRNA-4497 overexpression in placental villus tissues in early RM; To identify the potential target mRNAs of miRNA-4497; And to investigate the microRNA-4497-mediated regulatory mechanisms in placental trophoblasts. Methods Bioinformatics analysis was performed to identify the candidate target genes of miRNA-4497. The protein expression of Sp1 transcription factor (SP1), chemokine (C-X-C motif) receptor 5 (CXCR5) and bone morphogenetic protein 8a (BMP8A) were determined in the villus tissues of the RM and normal groups by Western blotting and immunohistochemistry. Cultured 293T cells were co-transfected with the miRNA-4497 agomir or luciferase reporter vectors containing the wild-type or mutant 3’-UTRs of the target mRNAs to verify the regulatory role of miRNA-4497. Results Bioinformatics analysis suggested that SP1, CXCR5 and BMP8A mRNAs are potential targets of miRNA-4497. The expression of SP1, CXCR5 and BMP8A proteins in the chorionic villus tissues of RM placentas were significantly decreased compared to those in the normal controls. Moreover, SP1 protein levels were inversely correlated with the levels of miRNA-4497 in the placentas of RM patients and normal controls. The expression of SP1 mRNA and protein were down-regulated in HTR-8/SVneo cells after forced overexpression of the miRNA-4497 agomir. The results of the co-transfection assay showed that mutation of the miRNA-4497-binding sites in the 3’-untranslated region (3’-UTR) of SP1 led to a recovery of luciferase activity upon overexpression of miRNA-4497, suggesting that SP1 could be a direct target of miRNA-4497. Conclusions An increased miRNA-4497 level in the placental villus tissues associated with recurrent miscarriage may down-regulate SP1 expression. The negative regulation of SP1 by miRNA-4497 may potentially contribute to the pathogenesis of recurrent miscarriage through promotion of trophoblast apoptosis. These findings provide novel information on the regulation of placental trophoblast apoptosis, and could be useful for the development of new therapeutic strategies for better management of recurrent miscarriage.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0240221
Author(s):  
Talal Abd El-Raheem ◽  
Rania H. Mahmoud ◽  
Enas M. Hefzy ◽  
Mohamed Masoud ◽  
Reham Ismail ◽  
...  

Purpose & methods Several single-nucleotide polymorphisms (SNPs) in the promoter region of the TNF-α gene can cause variations in the gene regulatory sites and act as risk factors for some autoimmune disorders as alopecia areata (AA) and vitiligo. This study aimed to detect the serum TNF-α (sTNF) level (by ELISA) and the rs1800629 (by real-time PCR) among AA and vitiligo Egyptian patients and to determine their relation with disease duration and severity. In silico analysis of this SNP to study the molecular regulation of the mutant genotypes was also done. Results In AA patients, no risk was associated with the mutant genotypes vs. the normal genotype, or with A allele vs. G allele. The risk of vitiligo was significantly higher with the G/A and A/A genotypes compared with HCs (p = 0.011). Similarly, a significantly increased risk was noted in patients with A allele vs. G allele (p<0.0001). In AA and vitiligo patients, a significant increase in sTNF-α levels was noted in the mutant G/A genotypes vs. the normal G/G genotype (p<0.0001) and in the A allele vs the G allele (p<0.0001). According to the in silico analysis, this SNP could mainly affect the SP1 transcription factor binding site with subsequent effect on TNF-α expression. Conclusion According to results of the laboratory and the in silico study, the mutant TNF-α (308) genotypes were risk factors that conferred susceptibility to vitiligo among Egyptian patients but had no effect on the susceptibility to AA.


Sign in / Sign up

Export Citation Format

Share Document