Adiabatic invariant and evolution equations for the motion of a particle in a strongly inhomogeneous magnetic field

1982 ◽  
Vol 25 (9) ◽  
pp. 703-710
Author(s):  
K. Sh. Khodzhaev ◽  
A. G. Chirkov ◽  
S. D. Shatalov
2018 ◽  
Vol 1 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Alexey Chernogor ◽  
Igor Blinkov ◽  
Alexey Volkhonskiy

The flow, energy distribution and concentrations profiles of Ti ions in cathodic arc are studied by test particle Monte Carlo simulations with considering the mass transfer through the macro-particles filters with inhomogeneous magnetic field. The loss of ions due to their deposition on filter walls was calculated as a function of electric current and number of turns in the coil. The magnetic field concentrator that arises in the bending region of the filters leads to increase the loss of the ions component of cathodic arc. The ions loss up to 80 % of their energy resulted by the paired elastic collisions which correspond to the experimental results. The ion fluxes arriving at the surface of the substrates during planetary rotating of them opposite the evaporators mounted to each other at an angle of 120° characterized by the wide range of mutual overlapping.


1967 ◽  
Vol 45 (4) ◽  
pp. 1481-1495 ◽  
Author(s):  
Myer Bloom ◽  
Eric Enga ◽  
Hin Lew

A successful transverse Stern–Gerlach experiment has been performed, using a beam of neutral potassium atoms and an inhomogeneous time-dependent magnetic field of the form[Formula: see text]A classical analysis of the Stern–Gerlach experiment is given for a rotating inhomogeneous magnetic field. In general, when space quantization is achieved, the spins are quantized along the effective magnetic field in the reference frame rotating with angular velocity ω about the z axis. For ω = 0, the direction of quantization is the z axis (conventional Stern–Gerlach experiment), while at resonance (ω = −γH0) the direction of quantization is the x axis in the rotating reference frame (transverse Stern–Gerlach experiment). The experiment, which was performed at 7.2 Mc, is described in detail.


2010 ◽  
Vol 53 (6) ◽  
pp. 1053-1058 ◽  
Author(s):  
Chen Tao ◽  
Shan Chuan-Jia ◽  
Li Jin-Xing ◽  
Liu Ji-Bing ◽  
Liu Tang-Kun ◽  
...  

2016 ◽  
Vol 23 (11) ◽  
pp. 112101 ◽  
Author(s):  
V. A. Svidzinski ◽  
J. S. Kim ◽  
J. A. Spencer ◽  
L. Zhao ◽  
S. A. Galkin ◽  
...  

2022 ◽  
Author(s):  
Andrey Starikovskiy ◽  
Nickolay Aleksandrov ◽  
Mikhail N. Shneider

2013 ◽  
Vol 20 (1) ◽  
pp. 163-178 ◽  
Author(s):  
A. V. Artemyev ◽  
A. I. Neishtadt ◽  
L. M. Zelenyi

Abstract. We present a theory of trapped ion motion in the magnetotail current sheet with a constant dawn–dusk component of the magnetic field. Particle trajectories are described analytically using the quasi-adiabatic invariant corresponding to averaging of fast oscillations around the tangential component of the magnetic field. We consider particle dynamics in the quasi-adiabatic approximation and demonstrate that the principal role is played by large (so called geometrical) jumps of the quasi-adiabatic invariant. These jumps appear due to the current sheet asymmetry related to the presence of the dawn–dusk magnetic field. The analytical description is compared with results of numerical integration. We show that there are four possible regimes of particle motion. Each regime is characterized by certain ranges of values of the dawn–dusk magnetic field and particle energy. We find the critical value of the dawn–dusk magnetic field, where jumps of the quasi-adiabatic invariant vanish.


Sign in / Sign up

Export Citation Format

Share Document