scholarly journals Hot plasma dielectric response to radio-frequency fields in inhomogeneous magnetic field

2016 ◽  
Vol 23 (11) ◽  
pp. 112101 ◽  
Author(s):  
V. A. Svidzinski ◽  
J. S. Kim ◽  
J. A. Spencer ◽  
L. Zhao ◽  
S. A. Galkin ◽  
...  
1961 ◽  
Vol 39 (7) ◽  
pp. 983-992
Author(s):  
L. T. Shepherd ◽  
H. M. Skarsgard

A study has been made of r-f. breakdown in which the controlling loss mechanism arises from the drift of electrons in an inhomogeneous magnetic field. The study was carried out using a toroidal system with parallel r-f. electric and steady magnetic fields. An approximate average-electron theory of drift-controlled breakdown is presented. Experimental measurements of breakdown r-f. electric field versus magnetic field were made at various pressures from 1.25 to 6.0 × 10−3 mm of Hg, using hydrogen and helium gases. A radio frequency of 8 Mc/sec was used. Magnetic fields up to 2000 gauss were employed. The r-f. breakdown field was found to vary as the inverse square root of the magnetic field as predicted by the theory.


1985 ◽  
Vol 54 (5) ◽  
pp. 1800-1807 ◽  
Author(s):  
Sanae-Inoue Itoh ◽  
Atsushi Fukuyama ◽  
Kimitaka Itoh ◽  
Kyoji Nishikawa

2018 ◽  
Vol 1 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Alexey Chernogor ◽  
Igor Blinkov ◽  
Alexey Volkhonskiy

The flow, energy distribution and concentrations profiles of Ti ions in cathodic arc are studied by test particle Monte Carlo simulations with considering the mass transfer through the macro-particles filters with inhomogeneous magnetic field. The loss of ions due to their deposition on filter walls was calculated as a function of electric current and number of turns in the coil. The magnetic field concentrator that arises in the bending region of the filters leads to increase the loss of the ions component of cathodic arc. The ions loss up to 80 % of their energy resulted by the paired elastic collisions which correspond to the experimental results. The ion fluxes arriving at the surface of the substrates during planetary rotating of them opposite the evaporators mounted to each other at an angle of 120° characterized by the wide range of mutual overlapping.


Author(s):  
J. Gaudestad ◽  
V. Talanov ◽  
A. Orozco ◽  
M. Marchetti

Abstract In the past couple years, Space Domain Reflectometry (SDR) has become a mainstream method to locate open defects among the major semiconductor manufacturers. SDR injects a radio frequency (RF) signal into the open trace creating a standing wave with a node at the open location. The magnetic field generated by the standing wave is imaged with a SQUID sensor using RF electronics. In this paper, we show that SDR can be used to non-destructively locate high resistance failures in Micro LeadFrame Packages (MLP).


Author(s):  
Lynne E. Macaskie ◽  
John Collins ◽  
Iryna P. Mikheenko ◽  
Jaime Gomez‐Bolivar ◽  
Mohamed L. Merroun ◽  
...  

1967 ◽  
Vol 45 (4) ◽  
pp. 1481-1495 ◽  
Author(s):  
Myer Bloom ◽  
Eric Enga ◽  
Hin Lew

A successful transverse Stern–Gerlach experiment has been performed, using a beam of neutral potassium atoms and an inhomogeneous time-dependent magnetic field of the form[Formula: see text]A classical analysis of the Stern–Gerlach experiment is given for a rotating inhomogeneous magnetic field. In general, when space quantization is achieved, the spins are quantized along the effective magnetic field in the reference frame rotating with angular velocity ω about the z axis. For ω = 0, the direction of quantization is the z axis (conventional Stern–Gerlach experiment), while at resonance (ω = −γH0) the direction of quantization is the x axis in the rotating reference frame (transverse Stern–Gerlach experiment). The experiment, which was performed at 7.2 Mc, is described in detail.


Sign in / Sign up

Export Citation Format

Share Document