Results of an experimental and numerical study of the aerodynamic heating of the undersurface of delta wings with sharp leading edges at mach numbers M?=6.1 and 8

1992 ◽  
Vol 26 (4) ◽  
pp. 631-636 ◽  
Author(s):  
N. A. Kovaleva ◽  
N. P. Kolina ◽  
A. P. Kosykh ◽  
A. Ya. Yushin

In this study, an attempt is made to evaluate the effect of first arched ends on the damping derived due to the pitch rate aimed at the variable sine wave bounty, flow deflection angle δ, pivot position, and the Mach numbers. Results show that with the escalation in the bounty of the complete sine wave (i.e., positive amplitude) there is an enlightened escalation in the pitch damping derivatives from h = 0, later in the downstream in the route of the sprawling verge it decreases till the location of the center of pressure and vice versa. At the location where the reasonable force acts, when we consider the stability derivatives in damping for the rate of pitch q, there is a rise in the numerical tenets of the spinoffs. This increase is non-linear in nature and not like for position near the leading edges. The level of the stifling derivatives owing to variations in Mach numbers, flow bend approach δ, and generosity of the sine wave remained in the same range.


2021 ◽  
Author(s):  
Medha Shruti ◽  
A. Vamsikrishna ◽  
B. M. Prabhudev
Keyword(s):  

Author(s):  
Jeswin Joseph ◽  
S. R. Shine

Very high thermal loads are expected in re-entry vehicles traveling at hypersonic Mach numbers due to severe aerodynamic heating. In the present study, numerical investigations are carried out to analyze the use of film cooling technology for a fully reusable and active thermal protection system of the re-entry vehicle. Simulations are done to examine the fundamental flow phenomenon and the performance of blunt body film cooling in hypersonic flows. Simulations are conducted for a blunt -nosed spacecraft flying at Mach numbers varying from 4 to 8 and 40 deg angle of attack. Film cooling holes are provided on the bottom of the blunt-nosed body. Standard values at an altitude of 30 km are used as in flow boundary conditions. The dependency of blowing ratios, stream-wise injection angle and inlet Mach number on the film cooling effectiveness are investigated. It is observed that the film cooling effectiveness reduces with increase in coolant injection angle. The film cooling performance is found to be decreasing with increase in Mach number. The results could provide useful inputs for optimization of an active thermal protection system of re-entry vehicles.


2005 ◽  
Vol 128 (3) ◽  
pp. 435-443 ◽  
Author(s):  
Bo Song ◽  
Wing F. Ng

An experimental and numerical study was performed on an optimized compressor stator cascade designed to operate efficiently at high inlet Mach numbers (M1) ranging from 0.83 to 0.93 (higher supercritical flow conditions). Linear cascade tests confirmed that low losses and high turning were achieved at normal supercritical flow conditions (0.7<M1<0.8), as well as higher supercritical flow conditions (0.83<M1<0.93), both at design and off-design incidences. The performance of this optimized stator cascade is better than those reported in the literature based on Double Circular Arc (DCA) and Controlled Diffusion Airfoil (CDA) blades, where losses increase rapidly for M1>0.83. A two-dimensional (2D) Navier-Stokes solver was applied to the cascade to characterize the performance and flow behavior. Good agreement was obtained between the CFD and the experiment. Experimental loss characteristics, blade surface Mach numbers, shadowgraphs, along with CFD flowfield simulations, were presented to elucidate the flow physics. It is found that low losses are due to the well-controlled boundary layer, which is attributed to an optimum flow structure associated with the blade profile. The multishock pattern and the advantageous pressure gradient distribution on the blade are the key reasons of keeping the boundary layer from separating, which in turn accounts for the low losses at the higher supercritical flow conditions.


1988 ◽  
Author(s):  
PETER-M. HARTWICH ◽  
C.-H. HSU ◽  
JAMES LUCKRING ◽  
C. LIU
Keyword(s):  

2017 ◽  
Vol 825 ◽  
pp. 825-852 ◽  
Author(s):  
Gaoming Xiang ◽  
Bing Wang

This paper performs a numerical study on the interaction of a planar shock wave with a water column embedded with/without a cavity of different sizes at high Weber numbers. The conservative-type Euler and non-conservative scalar two-equations representing the transportation of two-phase properties consist of the diffusion interface capture models. The numerical fluxes are computed by the Godunov-type Harten-Lax–van Leer contact Riemann solver coupled with an incremental fifth-order weighted essentially non-oscillatory (WENO) scheme. A third-order total variation diminishing (TVD) Runge–Kutta scheme is used to advance the solution in time. The morphology and dynamical characteristics are analysed qualitatively and quantitatively to demonstrate the breakup mechanism of the water column and formation of transverse jets under different incident shock intensities and embedded-cavity sizes. The jet tip velocities are extracted by analysing the interface evolution. The liquid column is prone to aerodynamic breakup with the formation of micro-mist at later stages instead of liquid evaporation because of the weakly heating effects of the surrounding air. It is numerically confirmed that the liquid-phase pressure will drop below the saturated vapour pressure, and the low pressure can be sustained for a certain time because of the focusing of the expansion wave, which accounts for the cavitation inside the liquid water column. The geometrical parameters of the deformed water column are identified, showing that the centreline width decreases but the transverse height increases nonlinearly with time. The deformation rates are nonlinearly correlated under different Mach numbers. The first transverse jet is found for a water column with an embedded cavity, whereas the water hammer shock and second jet do not occur under the impact of low intensity incident shock waves. The $x$-velocity component recorded at the rear stagnation point can remain unchanged for a comparable time after a declined evolution, which indicates that the downstream wall of the shocked water ring somehow moves uniformly. It can be explained that the acceleration of the downstream wall is balanced by the trailing shedding vortex, and this effect is more evident under higher Mach numbers. The increased enstrophy, mainly generated at the interface, demonstrates the competition of the baroclinic effects of the shock wave impact over dilatation.


Sign in / Sign up

Export Citation Format

Share Document