Chemical extractions of heavy metals in sediments as related to metal uptake by grass shrimp (Palaemonetes pugio) and clam (Mercenaria mercenaria)

1985 ◽  
Vol 14 (6) ◽  
pp. 749-757 ◽  
Author(s):  
Joseph H. Rule
1975 ◽  
Vol 2 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Jeffrey E. Drifmeyer ◽  
William E. Odum

Pb, Zn, and Mn, levels in sediment and common estuarine plants and animals colonizing dredge-spoil disposal areas were compared with levels occurring in the same materials from a natural salt-marsh. Finegrained dredge-spoil had considerabily higher levels of all three metals than did natural salt-marsh sediment, and large differences in the metals content of the spoil were observed, depending on sediment type.Pb levels in the Grass Shrimp (Palaemonetes pugio), Mummichog (Fundulus heteroclitus), Common Reed (Phragmites communis), Saltmarsh Cordgrass (Spartina alterniflora), and Saltmeadow Hay (Spartina patens), from dredge-spoil areas, were significantly higher at the 0.01 confidence level than in these species from the natural salt-marsh. Zn concentrations were significantly higher at this confidence level in the three plant species growing in dredge-spoil compared with those from the natural marsh. Mn content in Grass Shrimp from ponds in dredge-spoil disposal areas was significantly higher (0.05 confidence level) than in those from the natural marsh. Thus, dredge-spoil containing heavy metals, even though disposed of in specially designed diked containment areas, may act as a source of certain heavy metals that are potentially toxic to the biota.Data on the transfer of Pb and Mn in simple foodchains of the dredge-spoil pond ecosystem are presented and discussed in relation to feeding behaviour. Decreasing concentrations with increasing tropic level were observed for Pb and Mn, but no consistent pattern was noted with Zn.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 267-272 ◽  
Author(s):  
Ken Fukushi ◽  
Duk Chang ◽  
Sam Ghosh

The objective of this research was to investigate the feasibility of developing improved activated sludge cultures capable of removing heavy metals. Cystine, peptone, and β-glycerophosphate (BGP) stimulated metal uptake without the significant reduction of culture viability otherwise experienced in the absence of these chemicals. The cystine-peptone-BGP-grown culture exhibited the highest removal of copper and cadmium of 5.67 and 2.53 mM/g protein, respectively.


2012 ◽  
Vol 65 (1) ◽  
pp. 76-99 ◽  
Author(s):  
K. Haarstad ◽  
H. J. Bavor ◽  
T. Mæhlum

A literature review shows that more than 500 compounds occur in wetlands, and also that wetlands are suitable for removing these compounds. There are, however, obvious pitfalls for treatment wetlands, the most important being the maintenance of the hydraulic capacity and the detention time. Treatment wetlands should have an adapted design to target specific compounds. Aquatic plants and soils are suitable for wastewater treatment with a high capacity of removing nutrients and other substances through uptake, sorption and microbiological degradation. The heavy metals Cd, Cu, Fe, Ni and Pb were found to exceed limit values. The studies revealed high values of phenol and SO4. No samples showed concentrations in sediments exceeding limit values, but fish samples showed concentrations of Hg exceeding the limit for fish sold in the European Union (EU). The main route of metal uptake in aquatic plants was through the roots in emergent and surface floating plants, whereas in submerged plants roots and leaves take part in removing heavy metals and nutrients. Submerged rooted plants have metal uptake potential from water as well as sediments, whereas rootless plants extracted metals rapidly only from water. Caution is needed about the use of SSF CWs (subsurface flow constructed wetlands) for the treatment of metal-contaminated industrial wastewater as metals are shifted to another environmental compartment, and stable redox conditions are required to ensure long-term efficiency. Mercury is one of the most toxic heavy metals and wetlands have been shown to be a source of methylmercury. Methyl Hg concentrations are typically approximately 15% of Hgt (total mercury). In wetlands polycyclic aromatic hydrocarbons (PAH), bisphenol A, BTEX, hydrocarbons including diesel range organics, glycol, dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls (PCB), cyanide, benzene, chlorophenols and formaldehyde were found to exceed limit values. In sediments only PAH and PCB were found exceeding limit values. The pesticides found above limit values were atrazine, simazine, terbutylazine, metolachlor, mecoprop, endosulfan, chlorfenvinphos and diuron. There are few water quality limit values of these compounds, except for some well-known endocrine disrupters such as nonylphenol, phtalates, etc.


2007 ◽  
Vol 43 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Peter B. Key ◽  
Katy W. Chung ◽  
Jennifer Hoguet ◽  
Yelena Sapozhnikova ◽  
Michael H. Fulton

Sign in / Sign up

Export Citation Format

Share Document