Existence and uniqueness of solution of the Cauchy problem for singular systems of integro-differential equations

1993 ◽  
Vol 45 (12) ◽  
pp. 1932-1937
Author(s):  
Z. Šmarda
2013 ◽  
Vol 11 (11) ◽  
Author(s):  
Andrzej Rozkosz

AbstractWe consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.


1980 ◽  
Vol 21 (1) ◽  
pp. 65-80 ◽  
Author(s):  
S. Nababan ◽  
K.L. Teo

In this paper, a class of systems governed by second order linear parabolic partial delay-differential equations in “divergence form” with Cauchy conditions is considered. Existence and uniqueness of a weak solution is proved and its a priori estimate is established.


2019 ◽  
Vol 16 (4) ◽  
pp. 465-476 ◽  
Author(s):  
Sergiy Bak

We consider an infinite system of ordinary differential equations that describes the dynamics of an infinite system of linearly coupled nonlinear oscillators on a two-dimensional integer-valued lattice. We prove a result on the existence and uniqueness of global solutions of the Cauchy problem for such systems with power potentials. Moreover, a result on the nonexistence of global solutions is obtained.


2002 ◽  
Vol 72 (3) ◽  
pp. 299-316 ◽  
Author(s):  
P. Y. H. Pang ◽  
J. Xiao ◽  
F. Zhou

AbstractIn this article, we prove the existence and uniqueness of solution for the Cauchy problem of the Landau-Lifshitz equation of ferromagnetism with external magnetic field. We also show that the solution is globally regular with the exception of at most finitely many blow-up points. An energy identity at blow-up points is presented.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malkhaz Ashordia ◽  
Inga Gabisonia ◽  
Mzia Talakhadze

AbstractEffective sufficient conditions are given for the unique solvability of the Cauchy problem for linear systems of generalized ordinary differential equations with singularities.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractAn elementary approach, based on a systematic use of lower and upper solutions, is employed to detect the qualitative properties of solutions of first order scalar periodic ordinary differential equations. This study is carried out in the Carathéodory setting, avoiding any uniqueness assumption, in the future or in the past, for the Cauchy problem. Various classical and recent results are recovered and generalized.


Sign in / Sign up

Export Citation Format

Share Document