On the definition of singular bilinear forms and singular linear operators

1993 ◽  
Vol 45 (8) ◽  
pp. 1208-1214 ◽  
Author(s):  
W. Karwowski ◽  
V. Koshmanenko
Wittrings ◽  
1982 ◽  
pp. 1-18
Author(s):  
Manfred Knebusch ◽  
Manfred Kolster

1982 ◽  
Vol 34 (6) ◽  
pp. 1276-1302 ◽  
Author(s):  
Andrew B. Carson ◽  
Murray A. Marshall

We take the definition of a Witt ring to be that given in [13], i.e., it is what is called a strongly representational Witt ring in [8]. The classical example is obtained by considering quadratic forms over a field of characteristic ≠ 2 [17], but Witt rings also arise in studying quadratic forms or symmetric bilinear forms over more general types of rings [5,7, 8, 9]. An interesting problem in the theory is that of classifying Witt rings in case the associated group G is finite. The reduced case, i.e., the case where the nilradical is trivial, is better understood. In particular, the above classification problem is completely solved in this case [4, 12, or 13, Corollary 6.25]. Thus, the emphasis here is on the non-reduced case. Although some of the results given here do not require |G| < ∞, they do require some finiteness assumption. Certainly, the main goal here is to understand the finite case, and in this sense this paper is a continuation of work started by the second author in [13, Chapter 5].


2017 ◽  
Vol 39 (8) ◽  
pp. 2159-2175
Author(s):  
BENOÎT R. KLOECKNER

Using quantitative perturbation theory for linear operators, we prove a spectral gap for transfer operators of various families of intermittent maps with almost constant potentials (‘high-temperature’ regime). Hölder and bounded $p$-variation potentials are treated, in each case under a suitable assumption on the map, but the method should apply more generally. It is notably proved that for any Pommeau–Manneville map, any potential with Lipschitz constant less than 0.0014 has a transfer operator acting on $\operatorname{Lip}([0,1])$ with a spectral gap; and that for any two-to-one unimodal map, any potential with total variation less than 0.0069 has a transfer operator acting on $\operatorname{BV}([0,1])$ with a spectral gap. We also prove under quite general hypotheses that the classical definition of spectral gap coincides with the formally stronger one used in Giulietti et al [The calculus of thermodynamical formalism. J. Eur. Math. Soc., to appear. Preprint, 2015, arXiv:1508.01297], allowing all results there to be applied under the high-temperature bounds proved here: analyticity of pressure and equilibrium states, central limit theorem, etc.


The action of an arbitrary (but finite or compact) group on an arbitrary Hilbert space is studied. The application of group theory to physical calculations is often based on the Wigner-Eckart theorem, and one of the aims is to lead up to a general proof of this theorem. The group’s action gives irreducible ket-vector representation spaces, products of which lead to a definition of coupling (Wigner, or Clebsch-Gordan) coefficients and jm and j symbols. The properties of these objects are studied in detail, beginning with properties that are independent of the basis chosen for the representation spaces. We then explore some of the consequences of choosing bases by using the action of a subgroup. This leads to the Racah factorization lemma and the definition of jm factors, also a general statement of Racah’s reciprocity. In the third part, we add to these ideas, some properties of the space of all linear operators taking the Hilbert space to itself. This leads to a proof of the Wigner—Eckart theorem which is both succinct and in the language of quantum mechanics.


1986 ◽  
Vol 28 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Muneo Chō

Let X be a complex Banach space. We denote by B(X) the algebra of all bounded linear operators on X. Let = (T1, …, Tn) be a commuting n-tuple of operators on X. And let στ() and σ″() by Taylor's joint spectrum and the doubly commutant spectrum of , respectively. We refer the reader to Taylor [8] for the definition of στ() and σ″(), A point z = (z1,…, zn) of ℂn is in the joint approximate point spectrum σπ() of if there exists a sequence {xk} of unit vectors in X such that∥(Ti – zi)xk∥→0 as k → ∞ for i = 1, 2,…, n.


1989 ◽  
Vol 31 (2) ◽  
pp. 195-198
Author(s):  
W. Kucharz

Given a commutative ring A with identity, let W–1(A) denote the Witt group of skew-symmetric bilinear forms over A (cf. [1] or [7] for the definition of W–1 (A)).


Author(s):  
Yousef Saleh

Given an arbitrary measure , this study shows that the set of norm attaining multilinear forms is not dense in the space of all continuous multilinear forms on . However, we have the density if and only if is purely atomic. Furthermore, the study presents an example of a Banach space in which the set of norm attaining operators from into is dense in the space of all bounded linear operators . In contrast, the set of norm attaining bilinear forms on is not dense in the space of continuous bilinear forms on .


2019 ◽  
Vol 16 (1) ◽  
pp. 0104
Author(s):  
Kider Et al.

In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact operators. Finally, if T belongs to FC(V,U) and dimension of V is finite then T is fuzzy compact is proved.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950201 ◽  
Author(s):  
Antonio Bonilla ◽  
Marko Kostić

If we change the upper and lower densities in the definition of distributional chaos of a continuous linear operator on a Banach space [Formula: see text] by the Banach upper and Banach lower densities, respectively, we obtain Li–Yorke chaos. Motivated by this, we introduce the notions of reiterative distributional chaos of types [Formula: see text], [Formula: see text] and [Formula: see text] for continuous linear operators on Banach spaces, which are characterized in terms of the existence of an irregular vector with additional properties. Moreover, we study its relations with other dynamical properties and present the conditions for the existence of a vector subspace [Formula: see text] of [Formula: see text], such that every nonzero vector in [Formula: see text] is both irregular for [Formula: see text] and distributionally near zero for [Formula: see text].


Geophysics ◽  
1955 ◽  
Vol 20 (2) ◽  
pp. 254-269 ◽  
Author(s):  
Stephen M. Simpson

The problem of emphasizing signals on multiple trace seismograms is approached by considering a relationship between the input and output records. It is proposed that the transformation to output record be one which causes the output traces to be most “similar” or “in phase” according to a certain definition of this property. If the noise and signal are “properly behaved,” it may be demonstrated that a linear transformation chosen by this criterion must have a response emphasizing frequency ranges of high input signal‐to‐noise ratio. The determination of such a transformation from the input data alone is carried out for discrete linear operators. The numerical work involved in computing such operators is formidable. As an example the computations were carried out for a mixture of an artificial signal introduced into a noise record. The results are about as good as those obtained with conventional filtering techniques depending on prior knowledge of input signal‐to‐noise ratios.


Sign in / Sign up

Export Citation Format

Share Document