Evidence for the transcription of physiologically inactive rat-liver nucleolar chromatin by Escherichia coli RNA polymerase

1982 ◽  
Vol 2 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Fu-Li Yu ◽  
Annabella Barrett

Rat-liver nucleoli (10–15 pg DNA) were digested with either 0.6 or 3 units of DNase I for various times (up to 1 h). RNA synthesis was then measured in the absence or presence ol 3 units of Escherichia coli RNA polymerase. It was found that the nucleolar chromatin supporting the endogenous engaged RNA polymerase I transcription was compl-etely destroyed in 3 min with either concentration of DNase I. The nucleolar chromatin template transcribed by E. coli RNA polymerase retained 50% of its original capacity even 60 min alter 3 units of DNase I digestion. When hybridization experiments were conducted, it was found that the DNAs derived from both levels of DNase-Idigested nucleoli were incapable of forming hybrids with the labelled nucleolar RNA synthesized by the engaged RNA polymerase I from the untreated nucleoli. Since the engaged RNA polymerase I transcribes only the physiologically active genes of the nucleolar chromatin, and the RNA transcripts represent active gene product, these data suggest that DNase I digestion has completely destroyed the active genes of the nucleolar chromatin, and E. coli RNA polymerase is able to transcribe the inactive nucleolar chromatin template.

1982 ◽  
Vol 105 (3) ◽  
pp. 799-805 ◽  
Author(s):  
Haruko Yamano ◽  
Yasuko Sawai ◽  
Wen Long Thung ◽  
Fumiyasu Sato ◽  
Kinji Tsukada

Biochemistry ◽  
1975 ◽  
Vol 14 (22) ◽  
pp. 4907-4911 ◽  
Author(s):  
Joseph Martial ◽  
Josefina Zaldivar ◽  
Paulina Bull ◽  
Alejandro Venegas ◽  
Pablo Valenzuela

2006 ◽  
Vol 27 (3) ◽  
pp. 937-948 ◽  
Author(s):  
Brenden Rickards ◽  
S. J. Flint ◽  
Michael D. Cole ◽  
Gary LeRoy

ABSTRACT Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin.


2004 ◽  
Vol 15 (2) ◽  
pp. 946-956 ◽  
Author(s):  
Jonathan A. Claypool ◽  
Sarah L. French ◽  
Katsuki Johzuka ◽  
Kristilyn Eliason ◽  
Loan Vu ◽  
...  

Yeast cells entering into stationary phase decrease rRNA synthesis rate by decreasing both the number of active genes and the transcription rate of individual active genes. Using chromatin immunoprecipitation assays, we found that the association of RNA polymerase I with the promoter and the coding region of rDNA is decreased in stationary phase, but association of transcription factor UAF with the promoter is unchanged. Similar changes were also observed when growing cells were treated with rapamycin, which is known to inhibit the Tor signaling system. Rapamycin treatment also caused a decrease in the amount of Rrn3p-polymerase I complex, similar to stationary phase. Because recruitment of Pol I to the rDNA promoter is Rrn3p-dependent as shown in this work, these data suggest that the decrease in the transcription rate of individual active genes in stationary phase is achieved by the Tor signaling system acting at the Rrn3p-dependent polymerase recruitment step. Miller chromatin spreads of cells treated with rapamycin and cells in post-log phase confirm this conclusion and demonstrate that the Tor system does not participate in alteration of the number of active genes observed for cells entering into stationary phase.


1986 ◽  
Vol 235 (3) ◽  
pp. 699-705 ◽  
Author(s):  
H Matsui ◽  
H Yazawa ◽  
N Suzuki ◽  
T Hosoya

The activity of the template-engaged form of RNA polymerase I from livers of adrenalectomized rats was about 50-60% of that of normal control rats, and increased about 2-fold at 6 h after the administration of dexamethasone. However, no change was found in the activity of the ‘free’ form of RNA polymerase I or the template-engaged form of RNA polymerase II. Immunochemical studies using guinea-pig anti-(RNA polymerase I) serum disclosed that the total number of RNA polymerase I molecules did not vary during the treatment with dexamethasone. Cycloheximide caused a rapid decrease in the template-engaged form of RNA polymerase I activity in normal rats and in dexamethasone-treated (6 h) adrenalectomized rats, to the value in adrenalectomized rats, but affected it only slightly in adrenalectomized rats. The elongation rate of rRNA-precursor synthesis in liver nuclei was not affected by a change in the concentration of circulating dexamethasone. From these results, it is concluded that about half the rRNA-precursor synthesis in rat liver is regulated by glucocorticoids, probably through the synthesis of short-lived protein(s) which may play a role in conversion of the ‘dormant’ form of RNA polymerase I into the ‘engaged’ form.


1974 ◽  
Vol 141 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Bridget T. Hill ◽  
Renato Baserga

1. When WI-38 human diploid fibroblasts form confluent monolayers, DNA synthesis and cell division almost completely cease. A change of medium causes these density-inhibited cells to proliferate and within 1h after the application of the stimulus there is an increase in template activity of the chromatin isolated from stimulated cells. 2. The number of binding sites for Escherichia coli RNA polymerase was determined on chromatin from WI-38 cells by two different methods, i.e. incorporation of [3H]UTP into RNA in the absence of reinitiation, and incorporation of [γ-32P]GTP into chain termini. 3. Both methods indicate that the capacity of chromatin to bind E. coli RNA polymerase is increased in WI-38 cells stimulated to proliferate. 4. The increase in the number of binding sites for E. coli RNA polymerase parallels the increase in chromatin template activity and suggests that the latter reflects an increase in the number of initiation sites, rather than an increase in the rate of transcription.


Sign in / Sign up

Export Citation Format

Share Document