Reduced lipogenesis in cafeteria-fed rats exhibiting diet-induced thermogenesis

1983 ◽  
Vol 3 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Nancy J. Rothwell ◽  
Michael J. Stock ◽  
Paul Trayhurn

Fatty-acid synthesis has been measured in vivo with 3H2O in cafeteria-fed rats exhibiting diet-induced thermogenesis. Synthesis was decreased in brown adipose tissue, the liver, white adipose tissue, and the carcass of the cafeteria-fed animals compared to rats fed the normal stock diet. Whole-body synthesis was also decreased in the cafeteria-fed group. Diet-induced thermogenesis, in contrast to cold-induced non-shivering thermogenesis does not lead to increased fatty-acid synthesis and this is presumably due to the inhibitory effects on lipogenesis of the high dietary fat intake characteristic of cafeteria diets. The results also indicate that the energy cost of body fat deposition in cafeteria-fed rats is lower than in animals fed a low-fat/high-carbohydrate stock diet.

1983 ◽  
Vol 245 (1) ◽  
pp. E8-E13
Author(s):  
K. Tokuyama ◽  
H. Okuda

The effect of physical training on fatty acid synthesis in vivo was studied. After the rats had free access to a running wheel for 50 days, the rate of fatty acid synthesis estimated using 3H2O in adipose tissues of trained rats was about three times higher than that of sedentary rats in both the light and dark period. The rate of fatty acid synthesis in the liver but not in the brown adipose tissue was also slightly enhanced by physical training. The number of adipocytes was not affected, but the size of adipocytes was reduced by physical training. In trained rats, the rate of fatty acid synthesis in adipocytes whose diameter was similar to that of sedentary rats was about 10 times higher than that of sedentary rats. Within adipose tissue, the rate of fatty acid synthesis correlated positively to the diameter of adipocytes both in the sedentary and trained rats. These findings mean that the adaptive increase in fatty acid synthesis seen in adipocytes of trained rats is not secondary to the reduction in size of adipocytes.


2008 ◽  
Vol 86 (7) ◽  
pp. 416-423 ◽  
Author(s):  
Valéria E. Chaves ◽  
Danúbia Frasson ◽  
Maria E.S. Martins-Santos ◽  
Luiz C.C. Navegantes ◽  
Victor D. Galban ◽  
...  

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)–glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG–glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.


1983 ◽  
Vol 212 (2) ◽  
pp. 393-398 ◽  
Author(s):  
S W Mercer ◽  
P Trayhurn

Fatty acid synthesis was measured in vivo with 3H2O in interscapular brown adipose tissue of lean and genetically obese (ob/ob) mice. At 26 days of age, before the development of hyperphagia, synthesis in brown adipose tissue was higher in the obese than in the lean mice; synthesis was also elevated in the liver, white adipose tissue and carcass of the obese mice. At 8 weeks of age, when hyperphagia was well established, synthesis remained elevated in all tissues of the obese mice, with the exception of brown adipose tissue. Elevated synthesis rates were not apparent in brown adipose tissue of the obese mice at 14 days of age, nor at 35 days of age. These results demonstrate that brown adipose tissue in ob/ob mice has a transitory hyperlipogenesis at, and just after, weaning on to a low-fat/high-carbohydrate diet. Once hyperphagia has developed, by week 5 of life, brown adipose tissue is the only major lipogenic tissue in the obese mice not to exhibit elevated rates of fatty acid synthesis; this suggests that insulin resistance develops much more rapidly in brown adipose tissue than in other lipogenic tissues of the ob/ob mouse.


1989 ◽  
Vol 9 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Shelagh Wilson

BRL 26830 is a thermogenic β-adrenoceptor agonist which stimulates lipolysis and fatty acid oxidation in vivo. It also stimulates insulin secretion, and hence promotes glucose utilisation in vivo. The effect of this agent on white and brown adipose tissue of the rat was investigated. BRL 26830 increased the rate of fatty acid synthesis in vivo in white adipose tissue by 135% but reduced the rate of fatty acid synthesis in vivo in brown adipose tissue by 78%. The increase was abolished in white adipose tissue of streptozotocin-diabetic rats, indicating that the effect involved a rise in circulating insulin levels. The reduction in fatty acid synthesis in brown adipose tissues was associated with a reduction in the activity of acetyl-CoA carboxylase in the tissue consistent with a direct β-adrenoceptor-mediated effect. BRL 26830 also increased the proportion of pyruvate dehydrogenase in its active form in vivo in brown adipose tissue and this increase was abolished in streptozotocin-diabetic rats. These findings illustrate different sensitivities of white and brown adipose tissues to combined β-adrenergic and insulin stimulation.


1984 ◽  
Vol 62 (6) ◽  
pp. 695-699 ◽  
Author(s):  
Denis Richard ◽  
Paul Trayhurn

The present study has investigated the respective effects of training and exercise on the rates of fatty acid synthesis in mice. Male C57B1 10ScSn mice were trained by forced swimming in a tank at 36°C for 2 h each day for a 28-day period. Rates of fatty acid synthesis were determined in vivo by measuring the incorporation of tritium from 3H2O into tissue fatty acids. At the end of the training programme, both sedentary and trained mice were assigned to either exercising or resting groups. The results obtained show that both training and exercise affected the rates of fatty acid synthesis, regardless of whether the results are expressed per gram of tissue or per whole tissue. Training led to significant decreases in the rates of synthesis in the liver, interscapular brown adipose tissue, epididymal white adipose tissue, and the remaining carcass, particularly in resting mice. The rates of fatty acid synthesis in the major lipogenic tissues were also lower during exercise than under sedentary conditions. The reduction in synthesis in brown adipose tissue was noteworthy in view of the high capacity of this tissue for fatty acid synthesis. In conclusion, it is suggested that in exercise-trained mice carbohydrate is shunted away from the synthesis of lipid in favour of energy storage as glycogen.


Sign in / Sign up

Export Citation Format

Share Document