Fourier coefficients and the approximation of functions by series in a periodic multiplicative system

1984 ◽  
Vol 36 (3) ◽  
pp. 660-667
Author(s):  
M. S. Bespalov
Author(s):  
David Krieg ◽  
Mario Ullrich

AbstractWe study the $$L_2$$ L 2 -approximation of functions from a Hilbert space and compare the sampling numbers with the approximation numbers. The sampling number $$e_n$$ e n is the minimal worst-case error that can be achieved with n function values, whereas the approximation number $$a_n$$ a n is the minimal worst-case error that can be achieved with n pieces of arbitrary linear information (like derivatives or Fourier coefficients). We show that $$\begin{aligned} e_n \,\lesssim \, \sqrt{\frac{1}{k_n} \sum _{j\ge k_n} a_j^2}, \end{aligned}$$ e n ≲ 1 k n ∑ j ≥ k n a j 2 , where $$k_n \asymp n/\log (n)$$ k n ≍ n / log ( n ) . This proves that the sampling numbers decay with the same polynomial rate as the approximation numbers and therefore that function values are basically as powerful as arbitrary linear information if the approximation numbers are square-summable. Our result applies, in particular, to Sobolev spaces $$H^s_\mathrm{mix}(\mathbb {T}^d)$$ H mix s ( T d ) with dominating mixed smoothness $$s>1/2$$ s > 1 / 2 and dimension $$d\in \mathbb {N}$$ d ∈ N , and we obtain $$\begin{aligned} e_n \,\lesssim \, n^{-s} \log ^{sd}(n). \end{aligned}$$ e n ≲ n - s log sd ( n ) . For $$d>2s+1$$ d > 2 s + 1 , this improves upon all previous bounds and disproves the prevalent conjecture that Smolyak’s (sparse grid) algorithm is optimal.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Zhihua Zhang

For a bivariate function on a square, in general, its Fourier coefficients decay slowly, so one cannot reconstruct it by few Fourier coefficients. In this paper we will develop a new approximation scheme to overcome the weakness of Fourier approximation. In detail, we will use Lagrange interpolation and linear interpolation on the boundary of the square to derive a new approximation scheme such that we can use the values of the target function at vertices of the square and few Fourier coefficients to reconstruct the target function with very small error.


Author(s):  
Jingwen Wang ◽  
Xu Wang ◽  
Dan Yang ◽  
Kaiyang Wang

Background: Image reconstruction of magnetic induction tomography (MIT) is a typical ill-posed inverse problem, which means that the measurements are always far from enough. Thus, MIT image reconstruction results using conventional algorithms such as linear back projection and Landweber often suffer from limitations such as low resolution and blurred edges. Methods: In this paper, based on the recent finite rate of innovation (FRI) framework, a novel image reconstruction method with MIT system is presented. Results: This is achieved through modeling and sampling the MIT signals in FRI framework, resulting in a few new measurements, namely, fourier coefficients. Because each new measurement contains all the pixel position and conductivity information of the dense phase medium, the illposed inverse problem can be improved, by rebuilding the MIT measurement equation with the measurement voltage and the new measurements. Finally, a sparsity-based signal reconstruction algorithm is presented to reconstruct the original MIT image signal, by solving this new measurement equation. Conclusion: Experiments show that the proposed method has better indicators such as image error and correlation coefficient. Therefore, it is a kind of MIT image reconstruction method with high accuracy.


2012 ◽  
Vol 15 (3) ◽  
pp. 173-179
Author(s):  
Sahib Al-Saidy ◽  
◽  
Salim Dawood ◽  

2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abhishek Mishra ◽  
Vishnu Narayan Mishra ◽  
M. Mursaleen

AbstractIn this paper, we establish a new estimate for the degree of approximation of functions $f(x,y)$ f ( x , y ) belonging to the generalized Lipschitz class $Lip ((\xi _{1}, \xi _{2} );r )$ L i p ( ( ξ 1 , ξ 2 ) ; r ) , $r \geq 1$ r ≥ 1 , by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from $Lip ((\alpha ,\beta );r )$ L i p ( ( α , β ) ; r ) and $Lip(\alpha ,\beta )$ L i p ( α , β ) in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and $(C, \gamma , \delta )$ ( C , γ , δ ) means.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 389
Author(s):  
Jeong-Gyoo Kim

Fourier series is a well-established subject and widely applied in various fields. However, there is much less work on double Fourier coefficients in relation to spaces of general double sequences. We understand the space of double Fourier coefficients as an abstract space of sequences and examine relationships to spaces of general double sequences: p-power summable sequences for p = 1, 2, and the Hilbert space of double sequences. Using uniform convergence in the sense of a Cesàro mean, we verify the inclusion relationships between the four spaces of double sequences; they are nested as proper subsets. The completions of two spaces of them are found to be identical and equal to the largest one. We prove that the two-parameter Wiener space is isomorphic to the space of Cesàro means associated with double Fourier coefficients. Furthermore, we establish that the Hilbert space of double sequence is an abstract Wiener space. We think that the relationships of sequence spaces verified at an intermediate stage in this paper will provide a basis for the structures of those spaces and expect to be developed further as in the spaces of single-indexed sequences.


Sign in / Sign up

Export Citation Format

Share Document