Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts

1985 ◽  
Vol 14 (1) ◽  
pp. 1-12 ◽  
Author(s):  
S. David ◽  
A. J. Aguayo
2002 ◽  
Vol 96 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Allan D. O. Levi ◽  
Hector Dancausse ◽  
Xiuming Li ◽  
Suzanne Duncan ◽  
Laura Horkey ◽  
...  

Object. Partial restoration of hindlimb function in adult rats following spinal cord injury (SCI) has been demonstrated using a variety of transplantation techniques. The purpose of the present study was twofold: 1) to determine whether strategies designed to promote regeneration in the rat can yield similar results in the primate; and 2) to establish whether central nervous system (CNS) regeneration will influence voluntary grasping and locomotor function in the nonhuman primate. Methods. Ten cynomologus monkeys underwent T-11 laminectomy and resection of a 1-cm length of hemispinal cord. Five monkeys received six intercostal nerve autografts and fibrin glue containing acidic fibroblast growth factor (2.1 µg/ml) whereas controls underwent the identical laminectomy procedure but did not receive the nerve grafts. At 4 months postgrafting, the spinal cord—graft site was sectioned and immunostained for peripheral myelin proteins, biotinylated dextran amine, and tyrosine hydroxylase, whereas the midpoint of the graft was analyzed histologically for the total number of myelinated axons within and around the grafts. The animals underwent pre- and postoperative testing for changes in voluntary hindlimb grasping and gait. Conclusions. 1) A reproducible model of SCI in the primate was developed. 2) Spontaneous recovery of the ipsilateral hindlimb function occurred in both graft- and nongraft—treated monkeys over time without evidence of recovering the ability for voluntary tasks. 3) Regeneration of the CNS from proximal spinal axons into the peripheral nerve grafts was observed; however, the grafts did not promote regeneration beyond the lesion site. 4) The grafts significantly enhanced (p < 0.0001) the regeneration of myelinated axons into the region of the hemisected spinal cord compared with the nongrafted animals.


1991 ◽  
Vol 112 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Theo Hagg ◽  
Adarsh K. Gulati ◽  
M.Ali Behzadian ◽  
H.Lee Vahlsing ◽  
Silvio Varon ◽  
...  

2002 ◽  
Vol 19 (5) ◽  
pp. 661-668 ◽  
Author(s):  
SI-WEI YOU ◽  
KULDIP S. BEDI ◽  
HENRY K. YIP ◽  
KWOK-FAI SO

Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1–2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the long delay (1–6 weeks) between the two lesions since RGCs and their axons degenerate rapidly 1–2 weeks following axotomy in adult rodents. The present study examined the effects of the proximal and distal ON pre-lesions with a shortened delay (0–8 days) on axonal regeneration of RGCs through a normal or pre-degenerated PN graft. The ON of adult hamsters was transected intraorbitally at 2 mm (proximal lesion) or intracranially at 7 mm (distal lesion) from the optic disc. The pre-lesioned ON was re-transected at 0.5 mm from the disc after 0, 1, 2, 4, or 8 days and a normal or a pre-degenerated PN graft was attached onto the ocular stump. The number of RGCs regenerating their injured axons into the PN graft was estimated by retrograde labeling with FluoroGold 4 weeks after grafting. The number of regenerating RGCs decreased significantly when the delay-time increased in animals with both the ON pre-lesions (proximal or distal) compared to control animals without an ON pre-lesion. The proximal ON pre-lesion significantly reduced the number of regenerating RGCs after a delay of 8 days in comparison with the distal lesion. However, this adverse effect can be overcome, to some degree, by a pre-degenerated PN graft applied 2, 4, or 8 days after the distal ON pre-lesion enhanced more RGCs to regenerate than the normal PN graft. Thus, in order to obtain the highest number of regenerating RGCs, a pre-degenerated PN should be grafted immediately after an ON lesion.


2009 ◽  
Vol 29 (47) ◽  
pp. 14881-14890 ◽  
Author(s):  
V. J. Tom ◽  
H. R. Sandrow-Feinberg ◽  
K. Miller ◽  
L. Santi ◽  
T. Connors ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document