The effect of ionizing radiation on dielectric properties of bovine achilles tendon collagen in the temperature range of thermal denaturation

1994 ◽  
Vol 29 (20) ◽  
pp. 5353-5356 ◽  
Author(s):  
F. Jaroszyk ◽  
E. Marzec
1996 ◽  
Vol 11 (5) ◽  
pp. 1144-1148 ◽  
Author(s):  
R. S. Mishra ◽  
A. K. Mukherjee ◽  
K. Yamazaki ◽  
K. Shoda

The effects of plasma cycle and TiO2 doping on sintering kinetics during plasma activated sintering (PAS) of γ−Al2O3 have been studied in the temperature range of 1473–1823 K. Multiple plasma cycle leads to higher densification. Also, TiO2 doping enhances the sintering kinetics during PAS. In TiO2 doped specimens, near full density was obtained at 1673 K in less than 6 min using multiple plasma cycle. It is suggested that the dielectric properties of a material are critical for the success of the PAS process.


2014 ◽  
Vol 126 (5) ◽  
pp. 1125-1127 ◽  
Author(s):  
A. Starczewska ◽  
B. Solecka ◽  
M. Nowak ◽  
P. Szperlich

1995 ◽  
Vol 10 (8) ◽  
pp. 2085-2090 ◽  
Author(s):  
Ki Hyun Yoon ◽  
Young Sol Kim ◽  
Eung Soo Kim

The microwave dielectric properties of (Zr0.8Sn0.2)TiO4 were investigated as a function of the amount of additives such as Nb2O5 Ta2O5 and Sb2O5 in the temperature range of 20 °C to 80 °C at 7 GHz. As the amount of additives increased up to 1.0 mol %, the unloaded Q increased due to the decrease of oxygen vacancies in the (Zr0.8Sn0.2)TiO4 lattice and then decreased with further addition of additives because the electron concentration was increased. The temperature coefficient of the resonant frequency turned more negative with increasing additives. Although the Nb+5, Ta+5, and Sb+5 ions have a similar ionic size and the same valence electronics, each resulted in different microwave dielectric properties.


2016 ◽  
Vol 33 (3) ◽  
pp. 118-123 ◽  
Author(s):  
Dorota Szwagierczak ◽  
Jan Kulawik ◽  
Beata Synkiewicz ◽  
Agata Skwarek

Purpose The work was aimed at preparation of green tapes based on a new material Bi2/3CuTa4O12, to achieve spontaneously formation of an internal barrier layer capacitor (IBLC), fabrication of multilayer elements using low temperature cofired ceramics (LTCC) technology and their characterization. Design/methodology/approach The study focused on tape casting, lamination and co-sintering procedures and dielectric properties of Bi2/3CuTa4O12 multilayer capacitors. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies of the ceramic elements were performed. Impedance spectroscopy was used for characterization of dielectric properties in the frequency range of 0.1 Hz to −2 MHz and in the temperature range from −55 to 400°C. DC conductivity was investigated in the temperature range 20 to 740°C. Findings SEM observations revealed a good compatibility of the applied commercial Pt paste with the ceramic layers. The EDS microanalysis showed a higher content of oxygen at grain boundaries. The dominant dielectric response, which was recorded in the low frequency range and at temperatures above 0°C, was attributed to grain boundaries. The dielectric response at low temperatures and/or high frequencies was related to grains. The fabricated multilayer capacitors based on Bi2/3CuTa4O12 exhibited a high specific capacitance. Originality/value A new material Bi2/3CuTa4O12 was applied for preparation of green ceramic tapes and utilized for fabrication of multilayer ceramic capacitors using the LTCC technology. This material belongs to the group of high permittivity nonferroelectric compounds with a complex perovskite structure of CaCu3Ti4O12, that causes the spontaneously formation of IBLCs.


Sign in / Sign up

Export Citation Format

Share Document