Microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics with pentavalent additives

1995 ◽  
Vol 10 (8) ◽  
pp. 2085-2090 ◽  
Author(s):  
Ki Hyun Yoon ◽  
Young Sol Kim ◽  
Eung Soo Kim

The microwave dielectric properties of (Zr0.8Sn0.2)TiO4 were investigated as a function of the amount of additives such as Nb2O5 Ta2O5 and Sb2O5 in the temperature range of 20 °C to 80 °C at 7 GHz. As the amount of additives increased up to 1.0 mol %, the unloaded Q increased due to the decrease of oxygen vacancies in the (Zr0.8Sn0.2)TiO4 lattice and then decreased with further addition of additives because the electron concentration was increased. The temperature coefficient of the resonant frequency turned more negative with increasing additives. Although the Nb+5, Ta+5, and Sb+5 ions have a similar ionic size and the same valence electronics, each resulted in different microwave dielectric properties.

1999 ◽  
Vol 14 (9) ◽  
pp. 3567-3570 ◽  
Author(s):  
Ji-Won Choi ◽  
Chong-Yun Kang ◽  
Seok-Jin Yoon ◽  
Hyun-Jai Kim ◽  
Hyung-Jin Jung ◽  
...  

The microwave dielectric properties of Ca[(Li1/3Nb2/3)1−xMx]O3−δ (M = Sn, Ti, 0 ≤ x ≤ 0.5) ceramics were investigated. In general, the ceramics prepared were multiphase materials. However, single-phase specimens having orthorhombic perovskite structure similar to CaTiO3 could be obtained in the vicinity of Sn = 0.2 to 0.3, and Ti = 0.2. As Sn concentration increased, the dielectric constant (εr) decreased and the quality factor (Q) significantly increased within the limited Sn concentration. As Ti concentration increased, the dielectric constant (εr) increased, the quality factor (Q) decreased, and the temperature coefficient of resonant frequency (τf) changed from a negative to positive value. The temperature coefficient of resonant frequency of 0 ppm/°C was realized at Ti = 0.2. The Q · fo value and εr for this composition were found to be 26100 GHz and 38.6, respectively.


2001 ◽  
Vol 16 (6) ◽  
pp. 1734-1738 ◽  
Author(s):  
Yong Jun Wu ◽  
Xiang Ming Chen

The effects of Bi substitution for Nd in Ba6−3xNd8+2xTi18O54 (x = 2/3) solid solution upon the microstructures and microwave dielectric properties were investigated. The solid solubility limit of Bi in Ba6−3xNd8+2xTi18O54 (x = 2/3) solid solution was about 15 mol%, the same as that for x = 0.5, and densification of the present solid solutions could be performed well at lower temperatures. However, the variation tendency of microwave dielectric properties with composition in the present ceramics quite differed from that for x = 0.5: (1) The temperature coefficient of resonant frequency in the present ceramics showed a continuous variation from positive to negative and did not indicate extreme value at the solid solubility limit. (2) Near-zero temperature coefficient of resonant frequency combined with high-ε and high-Qf values could be obtained in the present ceramics, while that for x = 0.5 had a lower limit of +15 ppm/°C. (3) The dielectric constant also showed a continuous increase for the present compositions, while that in x = 0.5 had an extreme at solid solubility limit. Ceramics with composition of Ba6−3x(Nd0.85,Bi0.15)8+2xTi18O54 (x = 2/3) showed excellent dielectric properties of ε = 99.1, Qf = 5290 GHz, and τf = −5.5 ppm/°C.


2001 ◽  
Vol 16 (7) ◽  
pp. 2053-2056
Author(s):  
X. J. Lu ◽  
X. M. Chen

Modification of Pb0.5Ca0.5[(Mg1/3Nb2/3)0.5Ti0.5]O3 dielectric ceramics was performed by up to 20 mol% La substitution for Pb and Ca. The temperature coefficient of dielectric constant was significantly reduced by the present approach, while an increased Qf factor was achieved. Good microwave dielectric properties were obtained in a composition Pb0.425Ca0.425La0.1[(Mg1/3Nb2/3)0.5Ti0.5]O3: ε = 125; Qf = 3150 GHz; calculated temperature coefficient of resonant frequency δf = +253 ppm/°C.


2007 ◽  
Vol 336-338 ◽  
pp. 279-282
Author(s):  
In Sun Cho ◽  
Sang Gu Kang ◽  
Dong Wan Kim ◽  
Kug Sun Hong

The effects of CuO and V2O5 addition on sintering behaviors and microwave dielectric properties of 0.7Ca2P2O7-0.3TiO2 ceramics were investigated. With CuO and V2O5 addition, the sintering temperature of 0.7Ca2P2O7-0.3TiO2 can be effectively reduced from 1150 to 950oC. The dielectric constant of the low fired 0.7Ca2P2O7-0.3TiO2 ceramics was not significantly changed while the quality factor was affected by additives. The temperature coefficient of resonant frequency value was increased in negative value with the additive contents. V2O5 and CuO additives effectively improved the densification and dielectric properties of 0.7Ca2P2O7-0.3TiO2 ceramics. The correlation between the phase constituents and the dielectric properties was investigated with additive contents.


Sign in / Sign up

Export Citation Format

Share Document