Embryotoxic action of methyl mercury on coho salmon embryos

1992 ◽  
Vol 49 (3) ◽  
pp. 449-454 ◽  
Author(s):  
E. W. Devlin ◽  
N. K. Mottet
2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2004 ◽  
Vol 39 (3) ◽  
pp. 175-182 ◽  
Author(s):  
Keith B. Tierney ◽  
Eric Stockner ◽  
Christopher J. Kennedy

Abstract This study explored the effects of a sublethal 96-h dehydroabietic acid (DHAA) exposure on aspects of the immune system of juvenile coho salmon under varying temperature conditions. Coho were exposed to DHAA concentrations below the determined LC50 value of 0.94 mg/L (95% confidence limits of 0.81 to 1.24 mg/L) for 96 h at either their acclimation temperature (8 or 18°C), or during an acute warm-shock (8 to 18°C) or cold-shock (18 to 8°C). Acclimation temperature alone significantly affected hematocrit (Hct), neutrophil respiratory burst activity (RBA) and leucocyte proportions. With temperature-shock, leucocrit (Lct), RBA and leucocyte proportions were altered. All parameters were affected by DHAA exposure, but not always in a dose-dependent manner. Across groups, DHAA caused Hct, lysozyme, thrombocyte, neutrophil and monocyte proportions to increase, and Lct, RBA and lymphocyte proportions to decrease. DHAA-temperature interactions resulted in the exacerbation of DHAA-induced effects. Exposure temperature had the most significant effect on the susceptibility of coho to Aeromonas salmonicida; fish were more susceptible at cold temperatures and when subjected to a temperature-shock compared to their respective controls. DHAA exposure modulated the response of temperature-shocked fish to this pathogen.


1994 ◽  
Vol 30 (10) ◽  
pp. 213-219 ◽  
Author(s):  
Hendrik Pieters ◽  
Victor Geuke

Samples of yellow eel from various locations in the Dutch Rhine area have been analyzed for trend monitoring of mercury since 1977. In the western Rhine delta mercury levels in eels have hardly changed since the seventies, whereas in the eastern part of the Dutch Rhine area a considerable decrease of mercury concentrations in eel has occurred. Because of continuous sedimentation of contaminated suspended matter transported from upstream regions, accumulation rates and concentrations of mercury in eel in the western Rhine delta remained at a relatively high level. Analyses of methyl mercury in biota have been performed to elucidate the role of methyl mercury in the mercury contamination of the Dutch Rhine ecosystem. Low percentages of methyl mercury were observed in zooplankton (3 to 35%). In benthic organisms (mussels) percentages of methyl mercury ranged from 30 to 57%, while in fish species and liver of aquatic top predator birds almost all the mercury was present in the form of methyl mercury (> 80%). During the period 1970-1990 mercury concentrations of suspended matter in the eastern Rhine delta have drastically decreased. These concentrations seemed to be highly correlated with mercury concentrations of eel (R = 0.84). The consequences of this relation are discussed.


2003 ◽  
Vol 18 (1) ◽  
pp. 15-31 ◽  
Author(s):  
KATHLEEN P. BELL ◽  
DANIEL HUPPERT ◽  
REBECCA L. JOHNSON

Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 230
Author(s):  
Muhammad Salman Malik ◽  
Lena H. Teige ◽  
Stine Braaen ◽  
Anne Berit Olsen ◽  
Monica Nordberg ◽  
...  

Heart and skeletal muscle inflammation (HSMI), caused by infection with Piscine orthoreovirus-1 (PRV-1), is a common disease in farmed Atlantic salmon (Salmo salar). Both an inactivated whole virus vaccine and a DNA vaccine have previously been tested experimentally against HSMI and demonstrated to give partial but not full protection. To understand the mechanisms involved in protection against HSMI and evaluate the potential of live attenuated vaccine strategies, we set up a cross-protection experiment using PRV genotypes not associated with disease development in Atlantic salmon. The three known genotypes of PRV differ in their preference of salmonid host species. The main target species for PRV-1 is Atlantic salmon. Coho salmon (Oncorhynchus kisutch) is the target species for PRV-2, where the infection may induce erythrocytic inclusion body syndrome (EIBS). PRV-3 is associated with heart pathology and anemia in rainbow trout, but brown trout (S. trutta) is the likely natural main host species. Here, we tested if primary infection with PRV-2 or PRV-3 in Atlantic salmon could induce protection against secondary PRV-1 infection, in comparison with an adjuvanted, inactivated PRV-1 vaccine. Viral kinetics, production of cross-reactive antibodies, and protection against HSMI were studied. PRV-3, and to a low extent PRV-2, induced antibodies cross-reacting with the PRV-1 σ1 protein, whereas no specific antibodies were detected after vaccination with inactivated PRV-1. Ten weeks after immunization, the fish were challenged through cohabitation with PRV-1-infected shedder fish. A primary PRV-3 infection completely blocked PRV-1 infection, while PRV-2 only reduced PRV-1 infection levels and the severity of HSMI pathology in a few individuals. This study indicates that infection with non-pathogenic, replicating PRV could be a future strategy to protect farmed salmon from HSMI.


Sign in / Sign up

Export Citation Format

Share Document