Exact and asymptotic estimates forn-widths of some classes of periodic functions

1992 ◽  
Vol 8 (3) ◽  
pp. 289-307 ◽  
Author(s):  
Han-lin Chen ◽  
Chun Li
2021 ◽  
pp. 20
Author(s):  
V.V. Lipovik ◽  
N.P. Khoroshko

In the paper, we have found order asymptotic estimates of approximations, in the strong sense, relative to given matrix of classes of continuous periodic functions of two variables by some trigonometric polynomials.


2020 ◽  
Vol 17 (3) ◽  
pp. 396-413
Author(s):  
Anatolii Serdyuk ◽  
Igor Sokolenko

We find two-sided estimates for the best uniform approximations of classes of convolutions of $2\pi$-periodic functions from a unit ball of the space $L_p, 1 \le p <\infty,$ with fixed kernels such that the moduli of their Fourier coefficients satisfy the condition $\sum\limits_{k=n+1}^\infty\psi(k)<\psi(n).$ In the case of $\sum\limits_{k=n+1}^\infty\psi(k)=o(1)\psi(n),$ the obtained estimates become the asymptotic equalities.


1990 ◽  
Vol 13 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Hans G. Feichtinger ◽  
A. Turan Gürkanli

Continuing a line of research initiated by Larsen, Liu and Wang [12], Martin and Yap [13], Gürkanli [15], and influenced by Reiter's presentation of Beurling and Segal algebras in Reiter [2,10] this paper presents the study of a family of Banach ideals of Beurling algebrasLw1(G),Ga locally compact Abelian group. These spaces are defined by weightedLp-conditions of their Fourier transforms. In the first section invariance properties and asymptotic estimates for the translation and modulation operators are given. Using these it is possible to characterize inclusions in section 3 and to show that two spaces of this type coincide if and only if their parameters are equal. In section 4 the existence of approximate identities in these algebras is established, from which, among other consequences, the bijection between the closed ideals of these algebras and those of the corresponding Beurling algebra is derived.


1999 ◽  
Vol 32 (2) ◽  
Author(s):  
Stanislaw Stoinski

2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Sign in / Sign up

Export Citation Format

Share Document