Projector Quantum Monte Carlo without minus-sign problem

1992 ◽  
Vol 88 (2) ◽  
pp. 173-179 ◽  
Author(s):  
M. Frick ◽  
H. De Raedt
1997 ◽  
Vol 08 (02) ◽  
pp. 397-415 ◽  
Author(s):  
Thomas Husslein ◽  
Werner Fettes ◽  
Ingo Morgenstern

In this paper we compare numerical results for the ground state of the Hubbard model obtained by Quantum-Monte-Carlo simulations with results from exact and stochastic diagonalizations. We find good agreement for the ground state energy and superconducting correlations for both, the repulsive and attractive Hubbard model. Special emphasis lies on the superconducting correlations in the repulsive Hubbard model, where the small magnitude of the values obtained by Monte-Carlo simulations gives rise to the question, whether these results might be caused by fluctuations or systematic errors of the method. Although we notice that the Quantum-Monte-Carlo method has convergence problems for large interactions, coinciding with a minus sign problem, we confirm the results of the diagonalization techniques for small and moderate interaction strengths. Additionally we investigate the numerical stability and the convergence of the Quantum-Monte-Carlo method in the attractive case, to study the influence of the minus sign problem on convergence. Also here in the absence of a minus sign problem we encounter convergence problems for strong interactions.


1992 ◽  
Vol 03 (01) ◽  
pp. 97-104 ◽  
Author(s):  
H. DE RAEDT ◽  
W. VON DER LINDEN

All known Quantum-Monte-Carlo algorithms for fermions suffer from the so-called “minus-sign-problem” which is detrimental to the application of these simulation methods to fermion systems at very low temperatures and/or of very many lattice sites. We identify the origin of this fundamental problem, demonstrate that it is a very general feature, not necessarily related to the presence of fermionic degrees of freedom. We describe an novel algorithm which does not suffer from the minus-sign problem. Illustrative results for the two-dimensional Hubbard model are presented


2019 ◽  
Vol 10 (1) ◽  
pp. 337-356 ◽  
Author(s):  
Zi-Xiang Li ◽  
Hong Yao

Reliable simulations of correlated quantum systems, including high-temperature superconductors and frustrated magnets, are increasingly desired nowadays to further our understanding of essential features in such systems. Quantum Monte Carlo (QMC) is a unique numerically exact and intrinsically unbiased method to simulate interacting quantum many-body systems. More importantly, when QMC simulations are free from the notorious fermion sign problem, they can reliably simulate interacting quantum models with large system size and low temperature to reveal low-energy physics such as spontaneously broken symmetries and universal quantum critical behaviors. Here, we concisely review recent progress made in developing new sign-problem-free QMC algorithms, including those employing Majorana representation and those utilizing hot-spot physics. We also discuss applications of these novel sign-problem-free QMC algorithms in simulations of various interesting quantum many-body models. Finally, we discuss possible future directions of designing sign-problem-free QMC methods.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1447-1462 ◽  
Author(s):  
Y. ALHASSID

We discuss finite temperature quantum Monte Carlo methods in the framework of the interacting nuclear shell model. The methods are based on a representation of the imaginary-time many-body propagator as a superposition of one-body propagators describing non-interacting fermions moving in fluctuating auxiliary fields. Fermionic Monte Carlo calculations have been limited by a "sign" problem. A practical solution in the nuclear case enables realistic calculations in much larger configuration spaces than can be solved by conventional methods. Good-sign interactions can be constructed for realistic estimates of certain nuclear properties. We present various applications of the methods for calculating collective properties and level densities.


Sign in / Sign up

Export Citation Format

Share Document