superconducting correlations
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 13 (4) ◽  
pp. 471-478
Author(s):  
Karen Y. Constantinian ◽  
◽  
Gennady A. Ovsyannikov ◽  
Anton V. Shadrin ◽  
Yulii V. Kislinski ◽  
...  

Electron transport processes in oxide superconducting heterostructures with epitaxially grown magnetic thin-film interlayers, in which the interaction of superconducting correlations and magnetic ordering occurs due to superconducting and magnetic proximity effects, have been studied experimentally. Hybrid mesa-heterostructures were prepared from thin-film bottom cuprate superconductor (S), magnetic (M) interlayer made of manganite or an antiferromagnetic cuprate, and the upper electrode made from an ordinary superconductor. When the cuprate antiferromagnetic material was replaced by a ferromagnetic manganite interlayer, the superconducting current was suppressed, although the thin magnetic film was several times thinner, 5 nm, and the temperature was lowered to 0.3 K. At low temperatures dependences of differential resistance vs. voltage for mesa-heterostructures with manganite interlayer featured mini-gap low-energy states.


2021 ◽  
Author(s):  
◽  
Stephanie Droste

<p>Nanostructures with quantum dots in proximity to superconducting electrodes are an ideal tool to study superconducting correlations in systems with few degrees of freedom that exhibit strong Coulomb-interaction effects. Such hybrid superconductor-normal structures show rich physics due to the interplay of superconductivity, Coulomb interaction and non-equilibrium. Superconducting correlations are established on the quantum dot when it is coupled to a superconductor even in the presence of strong Coulomb repulsion and Cooper pairs can tunnel coherently between the quantum dot and the superconductor.  In this thesis, we investigate theoretically electronic transport through an interacting quantum dot coupled to normal and superconducting leads. The presence of the proximity effect can be detected by the dot's current, namely the Andreev current. However, current fluctuations might reveal information on the electronic transport and the internal structure of the system which is not visible in the mean value of the current. For this reason, we study the current fluctuations through the proximized quantum dot to get access to the properties of such a hybrid quantum-dot system. In particular, we are interested in the finite-frequency fluctuations to unveil the coherent dynamics underlying the proximity effect in the quantum dot and its internal time scales.  At first, we present a study of the frequency-dependent current noise for subgap transport through an interacting single-level quantum dot tunnel-coupled to normal and superconducting leads. For this purpose, we employ a non-equilibrium diagrammatic real-time approach to calculate the finite-frequency current noise. The finite-frequency noise spectrum shows a sharp dip at a frequency corresponding to the energy splitting of the Andreev bound states which is a signature of the coherent exchange of Cooper pairs between the quantum dot and the superconductor. Furthermore, in the high frequency regime, the so called quantum noise regime, the noise spectrum exhibits steps at frequencies equal to the excitation energies. These steps can be related to the effective coupling strength of the excitations.  However, the statistical description of the electron transport does not stop with the noise. Current cumulants of arbitrary order can be obtained by means of full counting statistics (FCS). We set up a theory based on the diagrammatic real-time approach to calculate the finite-time FCS for quantum transport with a non-Markovian master equation that captures the initial correlations between system and reservoir. This allows us to fully describe the current fluctuations of the hybrid quantum-dot system, that is the noise and all higher order current cumulants.</p>


2021 ◽  
Author(s):  
◽  
Stephanie Droste

<p>Nanostructures with quantum dots in proximity to superconducting electrodes are an ideal tool to study superconducting correlations in systems with few degrees of freedom that exhibit strong Coulomb-interaction effects. Such hybrid superconductor-normal structures show rich physics due to the interplay of superconductivity, Coulomb interaction and non-equilibrium. Superconducting correlations are established on the quantum dot when it is coupled to a superconductor even in the presence of strong Coulomb repulsion and Cooper pairs can tunnel coherently between the quantum dot and the superconductor.  In this thesis, we investigate theoretically electronic transport through an interacting quantum dot coupled to normal and superconducting leads. The presence of the proximity effect can be detected by the dot's current, namely the Andreev current. However, current fluctuations might reveal information on the electronic transport and the internal structure of the system which is not visible in the mean value of the current. For this reason, we study the current fluctuations through the proximized quantum dot to get access to the properties of such a hybrid quantum-dot system. In particular, we are interested in the finite-frequency fluctuations to unveil the coherent dynamics underlying the proximity effect in the quantum dot and its internal time scales.  At first, we present a study of the frequency-dependent current noise for subgap transport through an interacting single-level quantum dot tunnel-coupled to normal and superconducting leads. For this purpose, we employ a non-equilibrium diagrammatic real-time approach to calculate the finite-frequency current noise. The finite-frequency noise spectrum shows a sharp dip at a frequency corresponding to the energy splitting of the Andreev bound states which is a signature of the coherent exchange of Cooper pairs between the quantum dot and the superconductor. Furthermore, in the high frequency regime, the so called quantum noise regime, the noise spectrum exhibits steps at frequencies equal to the excitation energies. These steps can be related to the effective coupling strength of the excitations.  However, the statistical description of the electron transport does not stop with the noise. Current cumulants of arbitrary order can be obtained by means of full counting statistics (FCS). We set up a theory based on the diagrammatic real-time approach to calculate the finite-time FCS for quantum transport with a non-Markovian master equation that captures the initial correlations between system and reservoir. This allows us to fully describe the current fluctuations of the hybrid quantum-dot system, that is the noise and all higher order current cumulants.</p>


2021 ◽  
pp. 168494
Author(s):  
Finn Lasse Buessen ◽  
Sopheak Sorn ◽  
Ivar Martin ◽  
Arun Paramekanti

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zi-Xiang Li ◽  
Steven A. Kivelson ◽  
Dung-Hai Lee

AbstractWe present a theoretical framework for understanding the behavior of the normal and superconducting states of overdoped cuprate high temperature superconductors in the vicinity of the doping-tuned quantum superconductor-to-metal transition. The key ingredients on which we focus are d-wave pairing, a flat antinodal dispersion, and disorder. Even for homogeneous disorder, these lead to effectively granular superconducting correlations and a superconducting transition temperature determined in large part by the superfluid stiffness rather than the pairing scale.


Sign in / Sign up

Export Citation Format

Share Document