An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers

1981 ◽  
Vol 20 (2) ◽  
pp. 207-209 ◽  
Author(s):  
T. Kitano ◽  
T. Kataoka ◽  
T. Shirota

Until quite recently no satisfactory equation had been obtained for the representation of the viscosity of dilute solutions of strong electrolytes. An empirical equation was recently proposed by Jones and Dole to fit the only accurate data then available. Their equation may be represented thus : η = 1 + A √ c + B c , η = relative viscosity of the solution c = concentration in moles per litre A and B are constants. Jones and Dole realized that the coefficient A is due to interionic forces and in a series of later publications Falkenhagen, Dole and Vernon have deduced a theoretical equation giving values of A in terms of well-known physical constants. Their complete equation may be written η = 1 + ε √N v 1 z 1 /30η 0 √1000D k T ( z 1 + z 2 ) 4 π × [¼ μ 1 z 2 + μ 2 z 1 / μ 1 μ 2 - z 1 z 2 (μ 1 - μ 2 ) 2 /μ 1 μ 2 (√μ 1 z 1 + μ 2 z 2 + √(μ 1 + μ 2 ) ( z 1 + z 2 ) ) 2 ]√ c , where N = Avogadro's number v 1 , v 2 = numbers of ions z 1 , z 2 = valencies of ions μ 1 , μ 2 = absolute mobilities of ions D = dielectric constant of solvent k = Boltzmann's constant ε = electronic charge η 0 = viscosity of solvent T = absolute temperature.


Until very recently, no empirical equation had been found to represent satisfactorily the variation with concentration of the relative viscosity of electrolytes, nor had any adequate theoretical treatment of the problem been put forward. In 1929, however, Jones and Dole showed that the fluidity (or reciprocal of the relative viscosity) of a salt solution could be represented over a fairly wide range of concentration by an equation of the form ϕ = 1 + A√ c +B c , where ϕ is the fluidity, c the equivalent concentration, and A and B are empirical constants. The value of B is negative in the case of salts which increase the viscosity of water, and positive in cases of so-called “negative viscosity,” where the viscosity of the solution is less than that of the pure solvent. Jones and Dole argued further that the stiffening effect of the interionic forces would tend to make the constant A, which determines the viscosity at high dilution, always negative. A little later, Falkenhagen and Dole treated the problem theoretically from the standpoint of the ion-atmosphere theory of Debye and Huckel. They confirmed the suggestion that at high dilution the electrolyte must always increase the viscosity of the solvent, and showed that the relative viscosity of an electrolyte solution at high dilution must be represented by an equation of the form η μ / η 0 = 1 + K √ μ , where η μ is the viscosity of the solution, η 0 is the viscosity of the solvent, μ is the equivalent concentration, K is a constant.


1980 ◽  
Vol 19 (6) ◽  
pp. 764-769 ◽  
Author(s):  
T. Kitano ◽  
T. Kataoka ◽  
T. Nishimura ◽  
T. Sakai

2016 ◽  
Vol 2 (2) ◽  
pp. 49-53
Author(s):  
M. A. Ksenofontov ◽  
L. E. Ostrovskaya ◽  
E. Yu. Bobkova ◽  
V. S. Vasil`eva ◽  
T. G. Pavlukevich

2019 ◽  
Author(s):  
Chem Int

The physicochemical properties of six imported and one locally produced edible vegetable oils (soybean oil, sunflower oil, sunlit oil, hayat oil, avena oil, USA vegetable oil and Niger oil) purchased from Bahir Dar city, Ethiopia, were examined for their compositional quality. All the oil samples were characterized for specific gravity, moisture content, color, relative viscosity, refractive indices, ash content, peroxide value, saponification value, smoke point, acid value, free fatty acid value and trace metals contents using established methods. The result clearly indicates that some of the oil samples exhibited unacceptable value when compared with physicochemical parameters recommended by the Codex Alimentations Commission of FAO/WHO and the specification of Ethiopian standards. The contents of nickel (Ni), copper (Cu) and iron (Fe) in seven samples were determined using ICP-OES and their concentrations were found in the range of 1.8-20.4, 45.8-82.2 and 136.04-445.0 mg/kg, respectively.


1988 ◽  
Vol 3 (4) ◽  
pp. 175-183 ◽  
Author(s):  
H. Janeschitz-Kriegl ◽  
G. Krobath
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document