Long wavelength approximation to peristaltic motion of a power law fluid

1982 ◽  
Vol 21 (1) ◽  
pp. 30-35 ◽  
Author(s):  
G. Radhakrishnamacharya
2010 ◽  
Vol 65 (12) ◽  
pp. 1121-1127 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Awatif A. Hendi

An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied.


2011 ◽  
Vol 66 (3-4) ◽  
pp. 215-222 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Said Mesloub ◽  
Nasir Ali

In this investigation, we discuss the peristaltic motion based on the constitutive equations of a Carreau fluid in a channel. The fluid is electrically conducting in the presence of a uniform applied magnetic field. Four different wave forms are chosen. The fluid behaviour is studied using long wavelength approximation. Detailed analysis is performed for various emerging parameters on pumping and trapping phenomena. The present results reduce favourably with the currently available results of hydrodynamic case when the Hartman number is chosen zero.


2006 ◽  
Vol 2006 ◽  
pp. 1-19 ◽  
Author(s):  
T. Hayat ◽  
E. Momoniat ◽  
F. M. Mahomed

To understand the influence of an inserted endoscope and magnetohydrodynamic (MHD) power-law fluid on peristaltic motion, an attempt has been made for flow through tubes. The magnetic field of uniform strength is applied in the transverse direction to the flow. The analysis has been performed under long wavelength at low-Reynolds number assumption. The velocity fields and axial pressure gradient have been evaluated analytically. Numerical results are also presented and discussed.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-738 ◽  
Author(s):  
Ramzy M. Abumandour ◽  
Islam M. Eldesoky ◽  
Mohamed H. Kamel ◽  
Mohamed M. Ahmed ◽  
Sara I. Abdelsalam

AbstractIn the article, the effects of the thermal viscosity and magnetohydrodynamic on the peristalsis of nanofluid are analyzed. The dominant neutralization is deduced through long wavelength approximation. The analytical solution of velocity and temperature is extracted by using steady perturbation. The pressure gradient and friction forces are obtained. Numerical results are calculated and contrasted with the debated theoretical results. These results are calculated for various values of Hartmann number, variable viscosity parameter and amplitude ratio. It is observed that the pressure gradient is reduced with an increase in the thermal viscosity parameter and that the Hartmann number enhances the pressure difference.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Alan J. Levy ◽  
Xinyu Zhang

Tensile stability of healthy medial arterial tissue and its constituents, subject to initial geometrical and/or material imperfections, is investigated based on the long wavelength approximation. The study employs existing constitutive models for elastin, collagen, and vascular smooth muscle which comprise the medial layer of large elastic (conducting) arteries. A composite constitutive model is presented based on the concept of the musculoelastic fascicle (MEF) which is taken to be the essential building block of medial arterial tissue. Nonlinear equations governing axial stretch and areal stretch imperfection growth quantities are obtained and solved numerically. Exact, closed-form results are presented for both initial and terminal rates of imperfection growth with nominal load. The results reveal that geometrical imperfections, in the form of area nonuniformities, and material imperfections, in the form of constitutive parameter nonuniformities, either decrease or increase only slightly with increasing nominal load; a result which is to be expected for healthy tissue. By way of contrast, an examination of a simple model for elastin with a degrading stiffness gives rise to unbounded imperfection growth rates at finite values of nominal load. The latter result indicates how initial geometrical and material imperfections in diseased tissues might behave, a topic of future study by the authors.


Sign in / Sign up

Export Citation Format

Share Document