A remark on two-dimensional stokes flow solutions

1975 ◽  
Vol 26 (2) ◽  
pp. 245-247
Author(s):  
Jean-Yves Parlange
Keyword(s):  
2004 ◽  
Vol 31 (4) ◽  
pp. 344-357
Author(s):  
T. A. Dunaeva ◽  
A. A. Gourjii ◽  
V. V. Meleshko

Author(s):  
Darren G. Crowdy ◽  
Anthony M. J. Davis

A transform method for determining the flow generated by the singularities of Stokes flow in a two-dimensional channel is presented. The analysis is based on a general approach to biharmonic boundary value problems in a simply connected polygon formulated by Crowdy & Fokas in this journal. The method differs from a traditional Fourier transform approach in entailing a simultaneous spectral analysis in the independent variables both along and across the channel. As an example application, we find the evolution equations for a circular treadmilling microswimmer in the channel correct to third order in the swimmer radius. Significantly, the new transform method is extendible to the analysis of Stokes flows in more complicated polygonal microchannel geometries.


Author(s):  
G. A. Francfort

SynopsisUpon formalising an analogy between two-dimensional Stokes flow and two-dimensional isotropic conductivity, we exhibit a class of fourth order equations which behave “isomorphically” like isotropic conductivity from the standpoint of homogenisation and from that of corresponding bounding methods on possible effective behaviours. In particular, Lipton's result on the G-closure problem for mixtures of two incompressible elastic materials is recovered in the two-dimensional case.


We consider the problem of designing the section of a cylinder to minimize the drag per unit length it experiences when placed perpendicular to a uniform stream at low Reynolds number; we suppose the area of the cross-section to be given, and the flow to be two-dimensional. The relevant properties of a cylinder of general cross-section in a particular orientation can conveniently be expressed in terms of its equivalent radius; when the drag and flow at infinity are parallel, this equivalent radius is the radius of the circular cylinder giving rise to the same drag per unit length. We obtain a variational formula for this equivalent radius when the surface of the cylinder is perturbed; this shows that the optimum profile we seek must be such that the flow past it has a vorticity of constant magnitude at its surface, and this fact enables the optimum to be determined analytically. The efficacy of a particular section may be measured by its effective radius, this being the equivalent radius when the length scale is chosen to give the section an area π ; thus a circular cylinder has an effective radius of 1. The minimum possible effective radius, achieved by the optimum profile, is 0.88876. To illustrate some of the arguments we exploit in a more familiar setting, we also obtain a variational formula for the drag on a three-dimensional body in Stokes flow when its surface is perturbed.


Sign in / Sign up

Export Citation Format

Share Document