Inhibitory effect of pulmonary surfactant on Sendai virus infection in rat lungs

1996 ◽  
Vol 141 (8) ◽  
pp. 1571-1577 ◽  
Author(s):  
M. Tashiro ◽  
Y. Beppu ◽  
K. Sakai ◽  
H. Kido
1999 ◽  
Vol 73 (4) ◽  
pp. 2694-2702 ◽  
Author(s):  
Michèle Algarté ◽  
Hannah Nguyen ◽  
Christophe Heylbroeck ◽  
Rongtuan Lin ◽  
John Hiscott

ABSTRACT We have examined the consequences of overexpression of the IκBα and IκBβ inhibitory proteins on the regulation of NF-κB-dependent beta interferon (IFN-β) gene transcription in human cells after Sendai virus infection. In transient coexpression studies or in cell lines engineered to express different forms of IκB under tetracycline-inducible control, the IFN-β promoter (−281 to +19) linked to the chloramphenicol acetyltransferase reporter gene was differentially inhibited in response to virus infection. IκBα exhibited a strong inhibitory effect on virus-induced IFN-β expression, whereas IκBβ exerted an inhibitory effect only at a high concentration. Despite activation of the IκB kinase complex by Sendai virus infection, overexpression of the double-point-mutated (S32A/S36A) dominant repressors of IκBα (TD-IκBα) completely blocked IFN-β gene activation by Sendai virus. Endogenous IFN-β RNA production was also inhibited in Tet-inducible TD-IκBα-expressing cells. Inhibition of IFN-β expression directly correlated with a reduction in the binding of NF-κB (p50-RelA) complex to PRDII after Sendai virus infection in IκBα-expressing cells, whereas IFN-β expression and NF-κB binding were only slightly reduced in IκBβ-expressing cells. These experiments demonstrate a major role for IκBα in the regulation of NF-κB-induced IFN-β gene activation and a minor role for IκBβ in the activation process.


Virology ◽  
1995 ◽  
Vol 207 (1) ◽  
pp. 287-291 ◽  
Author(s):  
Mark Sangster ◽  
Lisa Hyland ◽  
Robert Sealy ◽  
Christopher Coleclough

2014 ◽  
Vol 89 (1) ◽  
pp. 337-349 ◽  
Author(s):  
David J. Morales ◽  
Kristen Monte ◽  
Lulu Sun ◽  
Jessica J. Struckhoff ◽  
Eugene Agapov ◽  
...  

ABSTRACTISG15 is a diubiquitin-like modifier and one of the most rapidly induced genes upon type I interferon stimulation. Hundreds of host proteins and a number of viral proteins have been shown to be ISGylated, and understanding how these modifications affect the interferon response and virus replication has been of considerable interest. ISG15−/−mice exhibit increased susceptibility to viral infection, and in the case of influenza B virus and vaccinia virus, ISG15 conjugation has been shown to restrict virus replicationin vivo. A number of studies have also found that ISG15 is capable of antagonizing replication of some viruses in tissue culture. However, recent findings have demonstrated that ISG15 can protect mice from Chikungunya virus infection without affecting the virus burden. In order to better understand the function of ISG15in vivo, we characterized the pathogenesis of influenza A virus and Sendai virus in ISG15−/−mice. We found that ISG15 protects mice from virus induced lethality by a conjugation-dependent mechanism in both of these models. However, surprisingly, we found that ISG15 had minimal effect on virus replication and did not have an obvious role in the modulation of the acute immune response to infection. Instead, we observed an increase in the number of diseased small airways in mice lacking ISG15. This ability of ISG15 to protect mice in a conjugation-dependent, but nonantiviral, manner from respiratory virus infection represents a previously undescribed role for ISG15 and demonstrates the importance of further characterization of ISG15in vivo.IMPORTANCEIt has previously been demonstrated that ISG15−/−mice are more susceptible to a number of viral infections. Since ISG15 is one of the most strongly induced genes after type I interferon stimulation, analysis of ISG15 function has largely focused on its role as an antiviral molecule during acute infection. Although a number of studies have shown that ISG15 does have a small effect on virus replication in tissue culture, few studies have confirmed this mechanism of protectionin vivo. In these studies we have found that while ISG15−/−mice are more susceptible to influenza A virus and Sendai virus infections, ISGylation does not appear to mediate this protection through the direct inhibition of virus replication or the modulation of the acute immune response. Thus, in addition to showing a novel mode of ISG15 mediated protection from virus infection, this study demonstrates the importance of studying the role of ISG15in vivo.


2003 ◽  
Vol 77 (14) ◽  
pp. 7945-7956 ◽  
Author(s):  
Christopher F. Basler ◽  
Andrea Mikulasova ◽  
Luis Martinez-Sobrido ◽  
Jason Paragas ◽  
Elke Mühlberger ◽  
...  

ABSTRACT The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-β) promoter and the IFN-stimulated ISG54 promoter (C. Basler et al., Proc. Natl. Acad. Sci. USA 97:12289-12294, 2000). We now show that VP35 inhibits virus infection-induced transcriptional activation of IFN regulatory factor 3 (IRF-3)-responsive mammalian promoters and that VP35 does not block signaling from the IFN-α/β receptor. The ability of VP35 to inhibit this virus-induced transcription correlates with its ability to block activation of IRF-3, a cellular transcription factor of central importance in initiating the host cell IFN response. We demonstrate that VP35 blocks the Sendai virus-induced activation of two promoters which can be directly activated by IRF-3, namely, the ISG54 promoter and the ISG56 promoter. Further, expression of VP35 prevents the IRF-3-dependent activation of the IFN-α4 promoter in response to viral infection. The inhibition of IRF-3 appears to occur through an inhibition of IRF-3 phosphorylation. VP35 blocks virus-induced IRF-3 phosphorylation and subsequent IRF-3 dimerization and nuclear translocation. Consistent with these observations, Ebola virus infection of Vero cells activated neither transcription from the ISG54 promoter nor nuclear accumulation of IRF-3. These data suggest that in Ebola virus-infected cells, VP35 inhibits the induction of antiviral genes, including the IFN-β gene, by blocking IRF-3 activation.


Sign in / Sign up

Export Citation Format

Share Document