Effect of blend ratio, dynamic crosslinking and HAF black on tear failure of 1,2-polybutadiene-natural-rubber blends

1987 ◽  
Vol 6 (2) ◽  
pp. 157-159 ◽  
Author(s):  
S. S. Bhagawan ◽  
D. K. Tripathy ◽  
S. K. De
2005 ◽  
Vol 70 (5) ◽  
pp. 695-703 ◽  
Author(s):  
Gordana Markovic ◽  
Blaga Radovanovic ◽  
Jaroslava Budinski-Simendic ◽  
Milena Marinovic-Cincovic

The dependence of the Mooney scorch time and cure index on the blend ratio of chlorosulphonated polyethylene/natural rubber (CSM/SMR 20 CV) and chlorosulphonated polyethylene/chlorinated natural rubber (CSM/Pergut S 40) blends were determined in the temperature range from 120 oC to 160 oC using a Monsanto Mooney viscometer. Semi-efficient vulcanization systems were used for the study. The morphology of the fracture surface of the crosslinked systems was determined by Scanning Electron Microscopy (SEM). The results showed that the scorch time decreased with increasing SMR 20 CV and Pergut S 40 contents. This observation is attributed to the increasing solubility of sulfur, as the content of SMR 20 CV and Pergut S 40 in the composition increased. For temperatures greater than 140 oC, the dependence of the scorch time on blend ratios diminishes, as enough thermal energy is available to overcome the activation energy of vulcanization. The differing curing characteristics of the two blends is explained by the compatibility factor of the respective blend. Morphological analysis of the blends shows a very satisfactory agreement.


2016 ◽  
Vol 99 ◽  
pp. 216-223 ◽  
Author(s):  
Pengfei Zhao ◽  
Lefan Li ◽  
Yongyue Luo ◽  
Zhen Lv ◽  
Kui Xu ◽  
...  

2015 ◽  
Vol 3 (4) ◽  
pp. 1-5
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar

By using a semi-efficient vulcanization system, the cure characteristics and crosslink density of natural rubber/styrene butadiene rubber (NR/SBR) blends were studied with a blend ratio from 0 to 100% rubber. The scorch time, optimum cure time, and torque difference value of the blended rubber compounds were determined by using the Moving-Die Rheometer (MDR 2000). The crosslink density was determined by the Flory—Rehner approach. Results indicate that the scorch and cure times, ts2 and t90, of the NR/SBR blends increased with increasing the SBR content. Whilst, the maximum values of torque difference and crosslink density were performed by the NR/SBR blend with a blend ratio of 75/25.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


Sign in / Sign up

Export Citation Format

Share Document