scholarly journals CURE CHARACTERISTICS AND CROSSLINK DENSITY OF NATURAL RUBBER/STYRENE BUTADIENE RUBBER BLENDS

2015 ◽  
Vol 3 (4) ◽  
pp. 1-5
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar

By using a semi-efficient vulcanization system, the cure characteristics and crosslink density of natural rubber/styrene butadiene rubber (NR/SBR) blends were studied with a blend ratio from 0 to 100% rubber. The scorch time, optimum cure time, and torque difference value of the blended rubber compounds were determined by using the Moving-Die Rheometer (MDR 2000). The crosslink density was determined by the Flory—Rehner approach. Results indicate that the scorch and cure times, ts2 and t90, of the NR/SBR blends increased with increasing the SBR content. Whilst, the maximum values of torque difference and crosslink density were performed by the NR/SBR blend with a blend ratio of 75/25.

2015 ◽  
Vol 815 ◽  
pp. 24-28
Author(s):  
N.R. Munirah ◽  
N.Z. Noriman ◽  
M.Z. Salihin ◽  
H. Kamarudin ◽  
M.H. Fatin ◽  
...  

The role of activated carbon (AC) in rubber compounds was investigated to better understand the reinforcing mechanism. The activated carbon filled styrene butadiene rubber vulcanizates (SBR-AC) using bamboo activated carbon as filler were prepared by using two-roll mill and cured at 160 °C. AC filler loading from 10 to 50 phr (part per hundred rubber) were used in this study. Study into the influences of filler loading on the cure characteristics, swelling behaviour and physical properties (hardness and resilience) of SBR-AC vulcanizates were carried out. It was observed that SBR-AC vulcanizates has better cure characteristics compared to the styrene butadiene rubber gum vulcanizate (SBR-GV) which is a non-filled vulcanizate. The results showed that the scorch time (ts2) decreased with increasing filler loading. The cure time (tc90) slightly decreased up to 20 phr before a rise as the filler loading increased. The minimum torque (ML) of SBR vulcanizate increased and the maximum torque (MH) decreased up to 20 phr but then increased with increasing filler loading. The cure rate index (CRI) of SBR-GV vulcanizate was higher than that of all SBR-AC vulcanizates. Up to 20 phr of filler loading, the CRI increased before a decline occurred as the filler loading increased. As expected, the hardness value of SBR-AC vulcanizates was higher compared to SBR-GV vulcanizate which has lower resilience. The hardness and crosslink density showed an increasing trend meanwhile the resilience was adversely affected by the increase in filler loading. Bamboo activated carbon showed some potential enhancement on the reinforcing and physical properties of the vulcanizates.


2003 ◽  
Vol 32 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Abi Santhosh Aprem ◽  
Kuruvilla Joseph ◽  
Sabu Thomas ◽  
Nektaria Marianthi Barkoula ◽  
J. Karger-Kocsis

2015 ◽  
Vol 815 ◽  
pp. 54-58 ◽  
Author(s):  
N.Z. Nik Yahya ◽  
Nik Noriman Zulkepli ◽  
Hussin Kamarudin ◽  
Hanafi Ismail ◽  
Sam Sung Ting ◽  
...  

Effects of different particle sizes of recycled nitrile glove (rNBRg) on curing characteristics and physical properties of natural rubber/styrene butadiene rubber/recycled nitrile glove (NR/SBR/rNBRg) blends were studied. The particle sizes of rNBRg were differentiated by the method of producing. S1 was obtained by cutting the rNBRg (whole glove) into smaller sheet; S2 was obtained by passing rNBRg through 2 rolls mill for 10 times; S3 was obtained by passing rNBRg through 2 rolls mill for 10 times and then mechanically grinded. NR/SBR/rNBRg blends were prepared at 50/30/20 composition using two roll mill at room temperature, with different particle sizes, rNBRg (S1), rNBRg (S2) and rNBRg (S3). Scorch time, cure time, minimum torque, maximum torque, crosslink density and hardness of the blends were examined. Results indicated that scorch time, cure time and minimum torque decreased as the rNBRg particle size decreased, while maximum torque and crosslink density increased. The rigidity of NR/SBR/rNBRg blends increased when smaller rNBRg particles were used, which explained the increased in hardness and decreased in resilience of the blends.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


1999 ◽  
Vol 35 (9) ◽  
pp. 1687-1693 ◽  
Author(s):  
N.S. Saxena ◽  
P. Pradeep ◽  
G. Mathew ◽  
S. Thomas ◽  
M. Gustafsson ◽  
...  

2018 ◽  
Vol 197 ◽  
pp. 12006 ◽  
Author(s):  
Indra Surya ◽  
Hanafi Ismail

By using a semi-efficient sulphur vulcanisation system, the effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and tensile properties of carbon black (CB)-filled styrene-butadiene rubber (SBR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and added into the CB-filled SBR compounds. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK decreased the scorch and cure times of the CB-filled SBR compounds. ALK also improved the tensile modulus and tensile strength; especially up to a 5.0 phr of loading. The crosslink density measurement proved that the 5.0 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength. Due to its plasticity effect, ALK increased the elongation at break of the CB-filled SBR vulcanisates.


2013 ◽  
Vol 594-595 ◽  
pp. 634-638 ◽  
Author(s):  
N.Z. Nik Yahya ◽  
N.Z. Noimam ◽  
Hanafi Ismail ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Santiagoo Ragunathan

Curing characteristics and swelling behavior of natural rubber/styrene butadiene rubber/recycled nitrile glove (NR/SBR/rNBRg) blends were investigated. Eleven composition ratio; 50/50/0, 50/40/10, 50/30/20, 50/20/30, 50/10/40, 50/0/50, 40/50/10, 30/50/20, 20/50/30, 10/50/40, and 0/50/50 of SMRL/SBR/rNBRg with the size of rNBRg ; 2.5 3.0 cm2 were prepared by using two roll mill at room temperature. Cure characteristics such as scorch time,t2, cure time,t90, minimum torque, ML, maximum torque, MH, and swelling behavior of SMRL/SBR/rNBRg ternary blends were examined. Results indicated that the scorch time and maximum torque of the NR/SBR/rNBRg blends decreased with increasing rNBRg content. The minimum torque of the blends increased as rNBRg content increased. The cure time of NR/SBR/rNBRg blends show a unique trend, which are depending on the domain rubber content. The increment in rNBRg content decreased the crosslink density of NR/SBR/rNBRg blends.


Sign in / Sign up

Export Citation Format

Share Document