Improved tests for a theoretical model of the bulk modulus of polycomponent inorganic oxide glasses

1989 ◽  
Vol 8 (9) ◽  
pp. 1060-1063 ◽  
Author(s):  
B. Bridge
2017 ◽  
Vol 29 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Michael McKee ◽  
Faramarz Gordaninejad ◽  
Xiaojie Wang

The temperature effect on performance of compressible magnetorheological fluid suspension systems is studied. Magnetorheological fluid is a temperature-dependent material where its compressibility and rheological properties change with temperature. Experimental studies were conducted to explore the temperature effects on the properties of the magnetorheological fluid and the compressible magnetorheological fluid suspension systems. The temperature effect on magnetorheological fluid properties included the bulk modulus, shear yield stress, and viscosity. It was found that the shear yield stress of the magnetorheological fluid remains unchanged within the testing range while both the plastic viscosity, using the Bingham plastic model, and the bulk modulus of the magnetorheological fluid decrease as the temperature of the fluid increases. A theoretical model that incorporates the temperature-dependent properties of magnetorheological fluid was developed to predict behavior of a compressible magnetorheological fluid suspension system. An experimental study was conducted using an annular flow compressible magnetorheological fluid suspension system with varying temperatures, motion frequencies, and magnetic fields. The experimental results are used to verify the theoretical model. Moreover, the stiffness and energy dissipation of the compressible magnetorheological fluid suspension system were obtained, experimentally. The effects of the temperature on performance characteristics of the compressible magnetorheological fluid suspension system were analyzed. It was found that both the stiffness and the energy dissipation decrease with an increase in the temperature of magnetorheological fluid.


Author(s):  
Micheal McKee ◽  
Xiaojie Wang ◽  
Faramarz Gordaninejad

This study focuses on the effect of temperature on the performance of compressible magnetorheological fluid dampers (CMRDs). In addition to change of properties in the presence of a magnetic field, magnetorheological fluids (MRFs) are temperature-dependent materials that their compressibility and rheological properties change with temperature, as well. A theoretical model that incorporates the temperature-dependent properties of MRF is developed to predict the behavior of a CMRD. An experimental study is also conducted using an annular flow CMRD with varying temperatures, motion frequencies, and magnetic fields. The experimental results are used to verify the theoretical model. The effect of temperature on the MRF properties, such as, the bulk modulus, yield stress and viscosity, are explored. It is found that the shear yield stress of the MRF remains unchanged within the testing range while both the plastic viscosity, using the Bingham plastic model, and the bulk modulus of the MRF decrease as temperature increases. In addition, it is observed that both the stiffness and the energy dissipation decrease with an increase in temperature.


1983 ◽  
Vol 77 (2) ◽  
pp. 655-668 ◽  
Author(s):  
B. Bridge ◽  
N. D. Patel ◽  
D. N. Waters

1991 ◽  
Vol 131-133 ◽  
pp. 994-1000 ◽  
Author(s):  
Andrew Burns ◽  
Hans Peter Brack ◽  
William M. Risen

1972 ◽  
Vol 11 (5) ◽  
pp. 755-758 ◽  
Author(s):  
G.J. Exarhos ◽  
W.M. Risen

Sign in / Sign up

Export Citation Format

Share Document