Ataxia associated with increased plasma concentrations of pristanic acid, phytanic acid and C27 bile acids but normal fibroblast branched-chain fatty acid oxidation

1996 ◽  
Vol 19 (6) ◽  
pp. 761-768 ◽  
Author(s):  
P. T. Clayton ◽  
A. W. Johnson ◽  
K. A. Mills ◽  
G. W. Lynes ◽  
J. Wilson ◽  
...  
The Prostate ◽  
2005 ◽  
Vol 63 (4) ◽  
pp. 316-323 ◽  
Author(s):  
Shan Zha ◽  
Sacha Ferdinandusse ◽  
Jessica L. Hicks ◽  
Simone Denis ◽  
Thomas A. Dunn ◽  
...  

2002 ◽  
Vol 283 (3) ◽  
pp. C688-C703 ◽  
Author(s):  
Barbara P. Atshaves ◽  
Stephen M. Storey ◽  
Anca Petrescu ◽  
Cynthia C. Greenberg ◽  
Olga I. Lyuksyutova ◽  
...  

High levels of saturated, branched-chain fatty acids are deleterious to cells and animals, resulting in lipid accumulation and cytotoxicity. Although fatty acid binding proteins (FABPs) are thought to be protective, this hypothesis has not previously been examined. Phytanic acid (branched chain, 16-carbon backbone) induced lipid accumulation in L cell fibroblasts similar to that observed with palmitic acid (unbranched, C16): triacylglycerol ≫ free fatty acid > cholesterol > cholesteryl ester ≫ phospholipid. Although expression of sterol carrier protein (SCP)-2, SCP-x, or liver FABP (L-FABP) in transfected L cells reduced [3H]phytanic acid uptake (57–87%) and lipid accumulation (21–27%), nevertheless [3H]phytanic acid oxidation was inhibited (74–100%) and phytanic acid toxicity was enhanced in the order L-FABP ≫ SCP-x > SCP-2. These effects differed markedly from those of [3H]palmitic acid, whose uptake, oxidation, and induction of lipid accumulation were not reduced by L-FABP, SCP-2, or SCP-x expression. Furthermore, these proteins did not enhance the cytotoxicity of palmitic acid. In summary, intracellular FABPs reduce lipid accumulation induced by high levels of branched-chain but not straight-chain saturated fatty acids. These beneficial effects were offset by inhibition of branched-chain fatty acid oxidation that correlated with the enhanced toxicity of high levels of branched-chain fatty acid.


Cell Reports ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3300-3311 ◽  
Author(s):  
Linford J.B. Briant ◽  
Michael S. Dodd ◽  
Margarita V. Chibalina ◽  
Nils J.G. Rorsman ◽  
Paul R.V. Johnson ◽  
...  

1990 ◽  
Vol 258 (1) ◽  
pp. H51-H56 ◽  
Author(s):  
S. E. Litwin ◽  
T. E. Raya ◽  
R. G. Gay ◽  
J. B. Bedotto ◽  
J. J. Bahl ◽  
...  

This study was designed to determine the changes in the heart that result from inhibition of long-chain fatty acid oxidation with 2-tetradecylglycidic acid (TDGA). Male Sprague-Dawley rats (n = 64) were treated with TDGA (20 mg.kg-1.day-1) or a comparable volume of vehicle by gavage feeding for 7 or 21 days. In conscious rats TDGA produced no changes in heart rate, left ventricular systolic or end-diastolic pressures, left ventricular pressure development (dP/dt), or the time constant of left ventricular relaxation. Left ventricular developed pressure was not changed at 21 days. TDGA increased left ventricular weight, left ventricular weight-to-body weight ratio, and total heart weight-to-body weight ratio. Left ventricular endocardial and epicardial myocyte volumes were increased by 53 and 65%, respectively. Myocardial triglyceride content was increased threefold. Left ventricular chamber stiffness constants between end-diastolic pressures of 0 and 30 mmHg were increased, and left ventricular end-diastolic volumes at operating end-diastolic pressures were decreased at both 7 and 21 days. The myocardial stiffness constant was also increased at 7 and 21 days. Thus inhibition of long-chain fatty acid oxidation with TDGA increased left ventricular mass and altered left ventricular chamber and muscle stiffness without changing left ventricular relaxation or systolic function. We conclude that inhibition of long-chain fatty acid oxidation produced an unusual model of left ventricular hypertrophy and diastolic dysfunction characterized by abnormalities of passive-elastic properties but preserved relaxation.


Sign in / Sign up

Export Citation Format

Share Document