Real-time feedforward control of low-frequency interior noise using shallow spherical shell piezoceramic actuators

1999 ◽  
Vol 8 (5) ◽  
pp. 579-584 ◽  
Author(s):  
V Jayachandran ◽  
Patrick King ◽  
Nancy E Meyer ◽  
Florence J Li ◽  
Maria Petrova ◽  
...  
2021 ◽  
pp. 104063872110214
Author(s):  
Deepanker Tewari ◽  
David Steward ◽  
Melinda Fasnacht ◽  
Julia Livengood

Chronic wasting disease (CWD) is a prion-mediated, transmissible disease of cervids, including deer ( Odocoileus spp.), which is characterized by spongiform encephalopathy and death of the prion-infected animals. Official surveillance in the United States using immunohistochemistry (IHC) and ELISA entails the laborious collection of lymphoid and/or brainstem tissue after death. New, highly sensitive prion detection methods, such as real-time quaking-induced conversion (RT-QuIC), have shown promise in detecting abnormal prions from both antemortem and postmortem specimens. We compared RT-QuIC with ELISA and IHC for CWD detection utilizing deer retropharyngeal lymph node (RLN) tissues in a diagnostic laboratory setting. The RLNs were collected postmortem from hunter-harvested animals. RT-QuIC showed 100% sensitivity and specificity for 50 deer RLN (35 positive by both IHC and ELISA, 15 negative) included in our study. All deer were also genotyped for PRNP polymorphism. Most deer were homozygous at codons 95, 96, 116, and 226 (QQ/GG/AA/QQ genotype, with frequency 0.86), which are the codons implicated in disease susceptibility. Heterozygosity was noticed in Pennsylvania deer, albeit at a very low frequency, for codons 95GS (0.06) and 96QH (0.08), but deer with these genotypes were still found to be CWD prion-infected.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Phong B. Dao

Multiagent control system (MACS) has become a promising solution for solving complex control problems. Using the advantages of MACS-based design approaches, a novel solution for advanced control of mechatronic systems has been developed in this paper. The study has aimed at integrating learning control into MACS. Specifically, learning feedforward control (LFFC) is implemented as a pattern for incorporation in MACS. The major novelty of this work is that the feedback control part is realized in a real-time periodic MACS, while the LFFC algorithm is done on-line, asynchronously, and in a separate non-real-time aperiodic MACS. As a result, a MACS-based LFFC design method has been developed. A second-order B-spline neural network (BSN) is used as a function approximator for LFFC whose input-output mapping can be adapted during control and is intended to become equal to the inverse model of the plant. To provide real-time features for the MACS-based LFFC system, the open robot control software (OROCOS) has been employed as development and runtime environment. A case study using a simulated linear motor in the presence of nonlinear cogging and friction force as well as mass variations is used to illustrate the proposed method. A MACS-based LFFC system has been designed and implemented for the simulated plant. The system consists of a setpoint generator, a feedback controller, and a time-index LFFC that can learn on-line. Simulation results have demonstrated the applicability of the design method.


Queue ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 37-51
Author(s):  
Terence Kelly

Expectations run high for software that makes real-world decisions, particularly when money hangs in the balance. This third episode of the Drill Bits column shows how well-designed software can effectively create wealth by optimizing gains from trade in combinatorial auctions. We'll unveil a deep connection between auctions and a classic textbook problem, we'll see that clearing an auction resembles a high-stakes mutant Tetris, we'll learn to stop worrying and love an NP-hard problem that's far from intractable in practice, and we'll contrast the deliberative business of combinatorial auctions with the near-real-time hustle of high-frequency trading. The example software that accompanies this installment of Drill Bits implements two algorithms that clear combinatorial auctions.


1999 ◽  
Author(s):  
Hwan-Sik Yoon ◽  
Gregory Washington

Abstract In this study, a smart aperture antenna of spherical shape is modeled and experimentally verified. The antenna is modeled as a shallow spherical shell with a small hole at the apex for mounting. Starting from five governing equations of the shallow spherical shell, two governing equations are derived in terms of a stress function and the axial deflection using Reissner’s approach. As actuators, four PZT strip actuators are attached along the meridians separated by 90 degrees respectively. The forces developed by the actuators are considered as distributed pressure loads on the shell surface instead of being applied as boundary conditions like previous studies. This new way of applying the actuation force necessitates solving for the particular solutions in addition to the homogeneous solutions for the governing equations. The amount of deflections is evaluated from the calculated stress function and the axial deflection. In addition to the analytical model, a finite element model is developed to verify the analytical model on the various surface positions of the reflector. Finally, an actual working model of the reflector is built and tested in a zero gravity environment, and the results of the theoretical model are verified by comparing them to the experimental data.


2013 ◽  
Vol 284-287 ◽  
pp. 2402-2406 ◽  
Author(s):  
Rong Choi Lee ◽  
King Chu Hung ◽  
Huan Sheng Wang

This thesis is to approach license-plate recognition using 2D Haar Discrete Wavelet Transform (HDWT) and artificial neural network. This thesis consists of three main parts. The first part is to locate and extract the license-plate. The second part is to train the license-plate. The third part is to real time scan recognition. We select only after the second 2D Haar Discrete Wavelet Transform the image of low-frequency part, image pixels into one-sixteen, thus, reducing the image pixels and can increase rapid implementation of recognition and the computer memory. This method is to scan for car license plate recognition, without make recognition of the individual characters. The experimental result can be high recognition rate.


Sign in / Sign up

Export Citation Format

Share Document