Determination of the kinetic parameters of thermal decomposition of [Co(NH3)6]2(C2O4)3· 4H2O by Kissinger's method

1990 ◽  
Vol 36 (6) ◽  
pp. 2139-2145 ◽  
Author(s):  
E. Ingier-Stocka
2018 ◽  
Vol 22 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Alok Dhaundiyal ◽  
Suraj B. Singh ◽  
Muammel M. Hanon ◽  
Rekha Rawat

Abstract A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.


2013 ◽  
Vol 67 (12) ◽  
Author(s):  
Juma Haydary ◽  
Dalibor Susa

AbstractKinetics of thermal decomposition of aseptic packages (e.g. Tetrapak cartons) and pyrolysis of this waste in a laboratory flow reactor was studied. Three different models for the calculation of the reaction rate and the determination of apparent kinetic parameters of thermal decomposition were used. The first method assumes a two stage thermal decomposition and the kinetic parameters were determined by fitting a derivative thermogravimetric (DTG) curve to experimentally determined thermogravimetric data of whole aseptic cartons. The second method uses kinetic parameters determined by fitting DTG curves to thermogravimetric data of individual components of aseptic packages. The last method was a multi-curve isoconversion method assuming a change of kinetic parameters with the increasing conversion. All types of the determined kinetic parameters were used in a mathematical model for thermal decomposition of mini briquettes made from aseptic packages at the temperature of 650°C. The model calculated also the heat conduction in the particles and it was verified by an independent set of experiments conducted in a laboratory screw type flow reactor.


Sign in / Sign up

Export Citation Format

Share Document