Alkaline phosphatase: A marker enzyme for brush border membrane

1972 ◽  
Vol 28 (4) ◽  
pp. 385-386 ◽  
Author(s):  
U. Schmidt ◽  
U. C. Dubach ◽  
I. Bieder ◽  
B. Funk
1985 ◽  
Vol 97 (5) ◽  
pp. 1461-1466 ◽  
Author(s):  
Kazuyuki HIRANO ◽  
Yuichi IIIZUMI ◽  
Yukio MORI ◽  
Kazumi TOYOSHI ◽  
Mamoru SUGIURA ◽  
...  

1984 ◽  
Vol 246 (6) ◽  
pp. F853-F858
Author(s):  
A. K. Mircheff ◽  
H. E. Ives ◽  
V. J. Yee ◽  
D. G. Warnock

A conventional brush border membrane preparation, obtained by divalent cation precipitation of homogenates of rabbit renal cortex, was analyzed by countercurrent distribution in an aqueous dextran:polyethylene glycol two-phase system. The resulting fractions were assayed for the presence of the Na+/H+ antiporter and for a variety of biochemical marker enzymes. This analysis revealed four physically distinct membrane populations (A-D). Population A consisted of two subpopulations, A' and A", which were enriched an average of 49-fold in maltase; they were also highly enriched in alkaline phosphatase, leucine aminopeptidase, and Na+/H+ antiporter. On the basis of their marker contents, populations A' and A" appear to represent highly purified, functional brush border membrane vesicles. Population B was enriched twofold in NADPH-cytochrome c reductase and population C was enriched 12-fold in galactosyltransferase. Populations B and C accounted for 25% of the protein in the starting material and appear to reflect contamination of the brush border membrane preparation by subpopulations of endoplasmic reticulum and Golgi fragments. Population D was enriched in Na+/H+ antiporter, alkaline phosphatase, leucine aminopeptidase, Na-K-ATPase, and acid phosphatase but not maltase, NADPH-cytochrome c reductase, galactosyltransferase, or succinate dehydrogenase. Its identity is unclear, and it might consist of a multiplicity of populations from different origins.


2006 ◽  
Vol 96 (6) ◽  
pp. 1087-1094 ◽  
Author(s):  
Neelam Farooq ◽  
Shubha Priyamvada ◽  
N. A. Arivarasu ◽  
Samina Salim ◽  
Farah Khan ◽  
...  

During Ramadan, Muslims the world over abstain from food and water from dawn to sunset for a month. We hypothesised that this unique model of prolonged intermittent fasting would result in specific intestinal and liver metabolic adaptations and hence alter metabolic activities. The effect of Ramadan-type fasting was studied on enzymes of carbohydrate metabolism and the brush border membrane of intestine and liver from rat used as a model. Rats were fasted (12 h) and then refed (12 h) daily for 30 d, as practised by Muslims during Ramadan. Ramadan-type fasting caused a significant decline in serum glucose, cholesterol and lactate dehydrogenase activity, whereas inorganic phosphate increased but blood urea N was not changed. Fasting resulted in increased activities of intestinal lactate (+34 %), isocitrate (+63 %), succinate (+83 %) and malate (+106 %) dehydrogenases, fructose 1,6-bisphosphatase (+17 %) and glucose-6-phosphatase (+22 %). Liver lactate dehydrogenase, malate dehydrogenase, glucose-6-phosphatase and fructose 1,6-bisphosphatase activities were also enhanced. However, the activities of glucose-6-phosphate dehydrogenase and malic enzyme fell significantly in the intestine but increased in liver. Although the activities of alkaline phosphatase, γ-glutamyl transpeptidase and sucrase decreased in mucosal homogenates and brush border membrane, those of liver alkaline phosphatase, γ-glutamyl transpeptidase and leucine aminopeptidase significantly increased. These changes were due to a respective decrease and increase of the maximal velocities of the enzyme reactions. Ramadan-type fasting caused similar effects whether the rats fasted with a daytime or night-time feeding schedule. The present results show a tremendous adaptation capacity of both liver and intestinal metabolic activities with Ramadan-type fasting in rats used as a model for Ramadan fasting in people.


1980 ◽  
Vol 190 (2) ◽  
pp. 473-476 ◽  
Author(s):  
H S Tenenhouse ◽  
C R Scriver ◽  
E J Vizel

We studied (1) the effect of primary modulators of phosphate transport, namely the hypophosphataemic mouse mutant (Hyp) and low-phosphorus diet, on alkaline phosphatase activity in mouse renal-cortex brush-border membrane vesicles and (2) the effect of several primary inhibitors of alkaline phosphatase on phosphate transport. Brush-border membrane vesicles from Hyp-mouse kidney had 50% loss of Na+-dependent phosphate transport, but only 18% decrease in alkaline phosphatase activity. The low-phosphorus diet effectively stimulated Na+/phosphate co-transport in brush-border membrane vesicles (+ 118%), but increased alkaline phosphatase activity only slightly (+13%). Levamisole (0.1 mM) and EDTA (1.0 mM) inhibited brush-border membrane-vesicle alkaline phosphatase activity of 82% and 93% respectively, but had no significant effect on Na+/phosphate co-transport. We conclude that alkaline phosphatase does not play a direct role in phosphate transport across the brush-border membrane of mouse kidney.


Sign in / Sign up

Export Citation Format

Share Document