Absolute cross-section measurements of inner-shell ionization

1994 ◽  
Vol 89 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Hans Schneider ◽  
Ingo Tobehn ◽  
Frank Ebel ◽  
Rainer Hippler
Author(s):  
E. H. S. Burhop ◽  
H. S. W. Massey

Calculations have been made of the cross-section for ionization of the inner shells of atoms by electron impact in the cases of the K-shells of nickel, silver, mercury and of the three L-shells of silver and mercury.The agreement with experiment is reasonably good for the K-shell ionization, but only fair in the case of the rather meagre experimental data available for the L-shell. The values obtained for the relative ionization in the K- and L-shells are in good agreement with those to be expected from experiment.


Author(s):  
C. J. Powell

Values of cross sections for ionization of inner-shell electrons by electron impact are required for electron probe microanalysis, Auger-electron spectroscopy, and electron energy-loss spectroscopy. The present author has reviewed measurements and calculations of inner-shell ionization cross sections. This paper is an update and summary of these previous reviews.It is convenient to start with the Bethe equation for inner-shell ionization cross sections which is frequently used (and misused) in x-ray microanalysis:(1)where σnℓ is the cross section for ionization of the nℓ shell with binding energy Enℓ by incident electrons of energy E. The terms bnℓ and cnℓ are the Bethe parameters discussed further below. It has been assumed in the derivation of Eq. (1) that E ≫ Enℓ ; this requirement will also be discussed. Finally, it has been assumed here that E is low enough (≲50 keV) so that a relativistic correction is unnecessary.The extent to which a given set of measured or calculated cross-section data is consistent with Eq. (1) can be determined from a Fano plot in which σnℓE is plotted versus ℓnE; if such a plot is linear, Eq. (1) is consistent with the data and values of the Bethe parameters can be easily derived.


1992 ◽  
Vol 02 (03) ◽  
pp. 197-209
Author(s):  
KEIZO ISHII

When a solid or gaseous target is bombarded with heavy charged particles, inner shell electrons of target atoms are ionized and characteristic x rays are produced. We can easily observe these x rays with a Si(Li) detector and derive inner-shell ionization cross section from the x-ray production cross sections. In this paper, we make a review of x-ray production, inner shell ionization and Reading’s theorem in light ion·atom collisions. This theorem is one of the most important ones in the ion·atom collision physics and permits precise discussion on comparison between experimental inner-shell ionization cross sections obtained with a Si(Li) detector and the calculations based on usual theories where the incident particle is assumed to interact with only one electron in an atom and the presence of other electrons is ignored.


1996 ◽  
Vol 74 (11-12) ◽  
pp. 743-747 ◽  
Author(s):  
Birgit Lohmann ◽  
Steven Cavanagh

The (e,2e) technique has been applied to the problem of direct outer shell ionization for many years, with considerable success. In recent years an increasing number of groups have explored the process of inner shell ionization, with a view to obtaining information on the dynamics of the process. In this paper, the existing theoretical and experimental studies of this process are discussed. Our recent measurements of the triple differential cross section for 2p ionization in argon, performed at lower energies than have been used previously, are presented.


Sign in / Sign up

Export Citation Format

Share Document