On the suppression of the vorticity in an electrically conducting fluid by means of an applied magnetic field

Meccanica ◽  
1976 ◽  
Vol 11 (1) ◽  
pp. 48-56
Author(s):  
Gianfranco Chiocchia
1964 ◽  
Vol 86 (3) ◽  
pp. 441-444 ◽  
Author(s):  
D. C. Kuzma

An analysis of hydrodynamic squeeze films is presented for the case of an electrically conducting fluid in the presence of a magnetic field. Circular plates and infinitely long rectangular plates are considered with a uniformly applied magnetic field. The relationships between fluid-film thickness and time are determined analytically and compared with the ordinary hydrostatic squeeze films. It is shown that the application of a magnetic field improves the squeeze-film action.


2008 ◽  
Vol 15 (sup1) ◽  
pp. 77-90 ◽  
Author(s):  
Tasawar Hayat ◽  
Herman Mambili-Mamboundou ◽  
Ebrahim Momoniat ◽  
Fazal M Mahomed

1969 ◽  
Vol 47 (15) ◽  
pp. 1621-1635 ◽  
Author(s):  
J. M. Gandhi

We present variational principles which characterize the solution of the equilibrium of a plane horizontal layer of an incompressible, electrically conducting fluid of electrical conductivity σ e.m.u., of magnetic permeability K, having a variable density ρ(z) in the vertical z direction, which is also the direction of gravity having acceleration g, and of viscosity μ(z) and which is rotating at Ω radians per second about the vertical axis in the presence of a horizontal magnetic field for the two cases:(i) When the electrically conducting fluid is assumed to be nonrotating (Ω = 0), with the conductivity σ being finite and the horizontal magnetic field being uniform.(ii) When the electrically conducting fluid is assumed to be rotating (Ω ± 0), with the conductivity σ being infinite and the horizontal magnetic field being stratified.Based on the variational principles for these two cases, an approximate solution is obtained for the special case of a fluid of finite depth d stratified according to the law ρ0 = ρ1 exp βz (ρ1 and β are some constants), for which kinematic viscosity ν is assumed to be constant. Growth rate and total wave number of the disturbance are related by two cubic equations, and for simplified cases explicit solutions are obtained. The properties of hydromagnetic waves generated are discussed.


Author(s):  
F. Pétrélis ◽  
S. Fauve

We present a review of the different models that have been proposed to explain reversals of the magnetic field generated by a turbulent flow of an electrically conducting fluid (fluid dynamos). We then describe a simple mechanism that explains several features observed in palaeomagnetic records of the Earth’s magnetic field, in numerical simulations and in a recent dynamo experiment. A similar model can also be used to understand reversals of large-scale flows that often develop on a turbulent background.


Sign in / Sign up

Export Citation Format

Share Document