Forest-floor nitrogen dynamics in a 60-year-old paper birch ecosystem in interior Alaska

1980 ◽  
Vol 54 (3) ◽  
pp. 359-381 ◽  
Author(s):  
Keith Van Cleve ◽  
Robert White
1981 ◽  
Vol 11 (4) ◽  
pp. 743-751 ◽  
Author(s):  
M. G. Weber ◽  
K. Van Cleve

Low addition levels of high enrichment isotope (>1% of the total nitrogen pool with 99 at.% excess 15N) were used to follow nitrogen movement through selected forest floor components of permafrost-free and permafrost-dominated black spruce ecosystems in subarctic Alaska. The nitrogen pool examined in this study was the total nitrogen pool. 15N was retained most effectively by the feather moss layer (Pleuroziumschreberi (BSG.) Mitt. and Hylocomiumsplendens (Hedw.) BSG.) on both black spruce sites. Twenty-eight months after isotope application the feather moss layer still contained over 90% of the 15N that could be recovered. The limited movement of 15N between feather moss layers and underlying forest floor horizons appeared to be slightly affected by climatological events. Differences in 15N movement patterns between permafrost-free and permafrost-dominated black spruce sites are discussed in terms of precipitation, soil temperature, and biological controls.


2021 ◽  
Author(s):  
Patrick F. Sullivan ◽  
Annalis H. Brownlee ◽  
Sarah B.Z. Ellison ◽  
Sean M.P. Cahoon

2009 ◽  
pp. 151-181 ◽  
Author(s):  
Sarah Watkinson ◽  
Dan Bebber ◽  
Peter Darrah ◽  
Mark Fricker ◽  
Monika Tlalka ◽  
...  

1989 ◽  
Vol 19 (12) ◽  
pp. 1648-1650 ◽  
Author(s):  
Elizabeth Anne France ◽  
Dan Binkley ◽  
David Valentine

After 27 years of stand development, the accumulated forest floor under replicated plots of white pine (Pinusstrobus L.), white spruce (Piceaglauca (Moench) Voss), paper birch (Betulapapyrifera Marsh.), and silver maple (Acersaccharinum L.) ranged from 240 g/m2 under maple to 3680 g/m2 under white pine. Forest floor pH ranged from a low under maple of 3.7 to a high under white spruce of 5.9. No significant differences were found in pH in 0–15 cm depth mineral soil; however, substantial differences in the acid neutralization capacities were evident among species, with soils under maple showing the lowest capacity to resist further acidification.


1986 ◽  
Vol 16 (6) ◽  
pp. 1320-1326 ◽  
Author(s):  
K. Van Cleve ◽  
O. W. Heal ◽  
D. Roberts

Using a bioassay approach, this paper considers the nitrogen-supplying power of forest floors from examples of the major forest types in interior Alaska. Yield and net N uptake by paper birch seedlings grown in standardized mixtures of quartz sand and forest floor organic matter, and separate incubation estimates of N mineralization and nitrification for the forest floors, were employed to evaluate potential N supply. Black spruce and floodplain white spruce forest floors supplied only one-fifth the amount of N taken up by seedlings growing in other forest floors. Incubation estimates showed these forest floors yielded 4 and 15 times less extractable N, respectively, than the more fertile birch forest floors. In comparison with earlier estimates of P supply from these same forest floors, the upland types showed greater deficiency of N whereas floodplain types showed greater deficiency of P in control of seedling yield. The latter condition is attributed to the highly calcareous nature of the floodplain mineral soil, the consequent potential for P fixation, and hence greater potential deficiency of the element compared with N in mineralizing forest floors. Nitrogen concentration of the forest floors was the best predictor of bioassay response.


1984 ◽  
Vol 14 (2) ◽  
pp. 278-290 ◽  
Author(s):  
M. G. Weber ◽  
K. Van Cleve

Permafrost-free and permafrost-dominated black spruce (Piceamariana (Mill.) B.S.P.) ecosystems in interior Alaska were treated with low addition levels of high enrichment isotope (<1% of the total nitrogen pool with 99 at.% excess 15N) to describe nitrogen dynamics through pools of selected forest floor components. A thick carpet of mosses, made up primarily of the feather moss species Hylocomiumsplendens (Hedw.) B.S.G. and Pleuroziumschreberi (B.S.G.) Mitt, seemed to play a vital role in the nitrogen economy of the forest floor. Nitrogen, quickly immobilized in the moss layers (green, brown) and retained there, was released very slowly to the lower organic layers (021 + 022) where most of the vascular plant roots were located. 15N uptake by the vascular understory was minimal, as was15Nexport via the soil solution. Periodic mineralization episodes, more frequent and dynamic at the permafrost-free site (where C/N ratios were lower), were largely restricted to the moss layers since available N fractions in deeper forest floor layers incorporated little label over the 3-year period. In the lower layers of the forest floor (021 + 022) temperature rather than organic matter quality appeared to be the overriding factor controlling N flow.


1983 ◽  
Vol 13 (5) ◽  
pp. 747-766 ◽  
Author(s):  
Keith Van Cleve ◽  
Lola Oliver ◽  
Robert Schlentner ◽  
Leslie A. Viereck ◽  
C. T. Dyrness

This paper considers the productivity and nutrient cycling in examples of the major forest types in interior Alaska. These ecosystem properties are examined from the standpoint of the control exerted over them by soil temperature and forest-floor chemistry. We conclude that black spruce Piceamariana (Mill.) B.S.P. occupies the coldest, wettest sites which support tree growth in interior Alaska. Average seasonal heat sums (1132 ± 32 degree days (DD)) for all other forest types were significantly higher than those encountered for black spruce (640 ± 40 DD). In addition, black spruce ecosystems display the highest average seasonal forest-floor and mineral-soil moisture contents. Forest-floor chemistry interacts with soil temperature in black spruce to produce the most decay-resistant organic matter. In black spruce the material is characterized by the highest lignin content and widest C/N (44) and C/P (404) ratios. Across the range of forest types examined in this study, soil temperature is strongly related to net annual aboveground tree production and the annual tree requirement for N, P, K, Ca, and Mg. Forest floor C/N and C/P ratios are strongly related to annual tree N and P requirement and the C/N ratio to annual tree production. In all cases these controls act to produce, in black spruce, the smallest accumulation of tree biomass, standing crop of elements, annual production, and element requirement in aboveground tree components.


1999 ◽  
Vol 29 (7) ◽  
pp. 993-1001 ◽  
Author(s):  
E C Cole ◽  
M Newton ◽  
A Youngblood

The current spruce bark beetle (Dendroctonus rufipennis Kirby) epidemic in interior Alaska is leaving large expanses of dead spruce with little spruce regeneration. Many of these areas are habitat for moose (Alces alces). To establish spruce regeneration and improve browse production for moose, paper birch (Betula papyrifera Marsh), willow (Salix spp.), and three stocktypes (plug+1 bareroot, and 1+0 plugs from two nurseries) of white spruce (Picea glauca (Moench) Voss) were planted in freshly cutover areas on Fort Richardson, near Anchorage. Four vegetation-management treatments were compared: broadcast site preparation with herbicides, banded site preparation with herbicides, mechanical scarification, and untreated control. Spruce seedlings had the greatest growth in the broadcast site preparation treatment (p < 0.01). Stocktype was the most important factor in spruce growth, with bareroot transplant seedlings being the tallest and largest 5 years after planting (p < 0.001). In the first 3 years, relative stem volume growth was greater for plug seedlings than for bareroot seedlings (p < 0.001). By year 4, relative growth rates were similar among all stocktypes. Treatment effects for paper birch and willow were confounded by moose browsing. Results indicate spruce can be regenerated and moose browse enhanced simultaneously in forests in interior Alaska.


Sign in / Sign up

Export Citation Format

Share Document