Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the glomales: Evidence by SSU rRNA Analysis

1996 ◽  
Vol 43 (1) ◽  
pp. 71-81 ◽  
Author(s):  
H. Gehrig ◽  
A. Schüßler ◽  
M. Kluge
Keyword(s):  
Ssu Rrna ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1656
Author(s):  
Simona Gabrielli ◽  
Marialetizia Palomba ◽  
Federica Furzi ◽  
Emanuele Brianti ◽  
Gabriella Gaglio ◽  
...  

Blastocystis is a common intestinal protist distributed worldwide, infecting humans and a wide range of domestic and wild animals. It exhibits an extensive genetic diversity and, so far, 25 distinct small subunit ribosomal RNA (SSU rRNA) lineages termed subtypes (STs)) have been characterized; among them, 12 have thus far been reported in humans. The aims of the present study were to detect and genetically characterize Blastocystis sp. in synantropic animals to improve our current knowledge on the distribution and zoonotic transmission of Blastocystis STs in Italy. Samples were collected from N = 193 farmed animals and submitted to DNA extraction and PCR amplification of the SSU rRNA. Blastocystis was detected in 60 samples (31.08%) and successfully subtyped. Phylogenetic analysis evidenced that the isolates from fallow deer, goats, and pigs (N = 9) clustered within the ST5; those from pheasants (N = 2) in the ST6; those from chickens (N = 8) in the ST7; those from sheep (N = 6) in the ST10; and those from water buffaloes (N = 9) in the ST14 clade. The comparison between the present isolates from animals and those previously detected in humans in Italy suggested the animal-to-human spillover for ST6 and ST7. The present study represents the widest Blastocystis survey performed thus far in farmed animals in Italy. Further epidemiological studies using molecular approaches are required to determine the occurrence and distribution of Blastocystis STs in other potential animal reservoirs in Italy and to define the pathways of zoonotic transmission.


2020 ◽  
Vol 10 ◽  
Author(s):  
Lilia González-Cerón ◽  
Mario H. Rodríguez ◽  
Marbella T. Ovilla-Muñoz ◽  
Frida Santillán-Valenzuela ◽  
Juan E. Hernández-Ávila ◽  
...  
Keyword(s):  

2011 ◽  
Vol 78 (2) ◽  
pp. 334-345 ◽  
Author(s):  
Tsvetan R. Bachvaroff ◽  
Sunju Kim ◽  
Laure Guillou ◽  
Charles F. Delwiche ◽  
D. Wayne Coats

ABSTRACTThe genusEuduboscquellais one of a few described genera within the syndinean dinoflagellates, an enigmatic lineage with abundant diversity in marine environmental clone libraries based on small subunit (SSU) rRNA. The region composed of the SSU through to the partial large subunit (LSU) rRNA was determined from 40 individual tintinnid ciliate loricae infected withEuduboscquellasampled from eight surface water sites in the Northern Hemisphere, producing seven distinct SSU sequences. The corresponding host SSU rRNA region was also amplified from eight host species. The SSU tree ofEuduboscquellaand syndinean group I sequences from environmental clones had seven well-supported clades and one poorly supported clade across data sets from 57 to 692 total sequences. The genusEuduboscquellaconsistently formed a supported monophyletic clade within a single subclade of group I sequences. For most parasites with identical SSU sequences, the more variable internal transcribed spacer (ITS) to LSU rRNA regions were polymorphic at 3 to 10 sites. However, inE. cachonithere was variation between ITS to LSU copies at up to 20 sites within an individual, while in a parasite ofTintinnopsisspp., variation between different individuals ranged up to 19 polymorphic sites. However, applying the compensatory base change model to the ITS2 sequences suggested no compensatory changes within or between individuals with the same SSU sequence, while one to four compensatory changes between individuals with similar but not identical SSU sequences were found. Comparisons between host and parasite phylogenies do not suggest a simple pattern of host or parasite specificity.


2001 ◽  
Vol 79 (2) ◽  
pp. 334-345 ◽  
Author(s):  
Georg FJ Armbruster

The influence of a temperature default on ribosomal RNA (rRNA) secondary structure models was studied with the "Mfold" energy-optimization program. Folding models of the internal transcribed spacer (ITS) 1 rRNA for both Drosophila simulans (Insecta) and Isabellaria adriani (Gastropoda) were generated at two different temperatures. The folding models are compared with the models previously shown for the ITS-1 of D. melanogaster Oregon R strain and I. adriani. A search for phylogenetically informative ITS-1 folding motifs was conducted for D. simulans. In I. adriani, a new approach for ITS-1 secondary structure analyses is suggested. The paper also elucidates results inferred from three energy-optimizing programs (Mfold, GeneBee, and STAR). These three folding programs give different information on the structure and free energy of a ITS-1 rRNA molecule. Furthermore, secondary-structure models of the small subunit (ssu) rRNA of Daphnia pulex (Crustacea: Cladocera) were investigated. The ssu rRNA molecule is usually folded according to alignment information. Here, ssu folding patterns are computed with Mfold using two temperature conditions. The two Mfold models are compared with the alignment model previously suggested for D. pulex. Three cladoceran-specific motifs and a short stem motif within the ssu rRNA of eukaryotes are discussed with respect to structure and phylogenetic information.


Protist ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 367-380 ◽  
Author(s):  
Takeshi Nakayama ◽  
Birger Marin ◽  
Harald D. Kranz ◽  
Barbara Surek ◽  
Volker A.R. Huss ◽  
...  

1999 ◽  
Vol 35 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Joon-seok Chae ◽  
Suryakant D. Waghela ◽  
Thomas M. Craig ◽  
Alan A. Kocan ◽  
Gerald G. Wagner ◽  
...  

2013 ◽  
Vol 60 (3) ◽  
pp. 135-148 ◽  
Author(s):  
Ioannis A. Papaioannou ◽  
Chrysoula D. Dimopoulou ◽  
Milton A. Typas

2018 ◽  
Author(s):  
Jürgen F. H. Strassert ◽  
Elisabeth Hehenberger ◽  
Javier del Campo ◽  
Noriko Okamoto ◽  
Martin Kolisko ◽  
...  

ABSTRACTSpores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium to analyse the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


Sign in / Sign up

Export Citation Format

Share Document