Integratng the family service system from the inside out: A view from the bureaucratic trenches

1995 ◽  
Vol 16 (4) ◽  
pp. 413-424 ◽  
Author(s):  
Scott D. Williams
2015 ◽  
Vol 42 (1) ◽  
pp. 25-35 ◽  
Author(s):  
M. Vuorenmaa ◽  
M.-L. Perälä ◽  
N. Halme ◽  
M. Kaunonen ◽  
P. Åstedt-Kurki

2001 ◽  
Vol 86 (07) ◽  
pp. 259-265 ◽  
Author(s):  
Andrew Leavitt ◽  
Sanford Shattil

SummaryIntegrin αIIbβ3 mediates key platelet adhesive responses during hemostasis and thrombosis. Adhesive ligand binding to αIIbβ3 is regulated by “inside-out” signals, while adhesion-dependent cytoskeletal events are regulated by “outside-in” signals from αIIbβ3. Currently, the molecular basis of bidirectional αIIbβ3 signaling is incompletely understood. The functional assessment of integrin signaling pathways in nucleated cells has been facilitated by techniques such as viral transduction which enable expression of dominant-active and dominant-inhibitory gene products. This approach cannot be used with anucleate platelets. However, recent advances in the ability to expand human and murine megakaryocytes from hematopoietic stem cells provide a tractable and genetically manipulatable system for studies of αIIbβ3 signaling. This overview will discuss some of the advantages and limitations of this approach and provide examples of its utility. Thus, in addition to their intrinsic value for understanding hematopoiesis and platelet formation, primary megakaryocytes represent a model system complementary to platelets for unraveling the remaining mysteries of αIIbβ3 signaling.


1998 ◽  
Vol 18 (2) ◽  
pp. 69-82 ◽  
Author(s):  
R. A. McWilliam ◽  
Ardith Ferguson ◽  
Gloria L. Harbin ◽  
Patricia Porter ◽  
Duncan Munn ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1058-1071
Author(s):  
Jaroslav Janáček ◽  
Lýdia Gábrišová ◽  
Miroslav Plevný

The request of equal accessibility must be respected to some extent when dealing with problems of designing or rebuilding of emergency service systems. Not only the disutility of the average user but also the disutility of the worst situated user must be taken into consideration. Respecting this principle is called fairness of system design. Unfairness can be mitigated to a certain extent by an appropriate fair allocation of additional facilities among the centres. In this article, two criteria of collective fairness are defined in the connection with the facility allocation problem. To solve the problems, we suggest a series of fast algorithms for solving of the allocation problem. This article extends the family of the original solving techniques based on branch-and-bound principle by newly suggested techniques, which exploit either dynamic programming principle or convexity and monotony of decreasing nonlinearities in objective functions. The resulting algorithms were tested and compared performing numerical experiments with real-sized problem instances. The new proposed algorithms outperform the original approach. The suggested methods are able to solve general min-sum and min-max problems, in which a limited number of facilities should be assigned to individual members from a finite set of providers.


Sign in / Sign up

Export Citation Format

Share Document