scholarly journals Protected areas in the North Sea: An absolute need for future marine research

1995 ◽  
Vol 49 (1-4) ◽  
pp. 591-602 ◽  
Author(s):  
H. J. Lindeboom
2021 ◽  
Vol 163 ◽  
pp. 105230
Author(s):  
Michael Weinert ◽  
Moritz Mathis ◽  
Ingrid Kröncke ◽  
Thomas Pohlmann ◽  
Henning Reiss

2008 ◽  
Vol 65 (8) ◽  
pp. 1392-1397 ◽  
Author(s):  
Peter Heslenfeld ◽  
E. Lisette Enserink

Abstract Heslenfeld, P., and Enserink, E. L. 2008. OSPAR Ecological Quality Objectives: the utility of health indicators for the North Sea. – ICES Journal of Marine Science, 65: 1392–1397. Committed to the ecosystem approach to management, OSPAR has accumulated 15 years of experience in developing a conceptual framework for ecological indicators and objectives, and in applying the framework to the North Sea as a test case. These Ecological Quality Objectives (EcoQOs) have become a model for the implementation of the new European Marine Strategy Framework Directive. We describe the history of EcoQO development, its current status, and future needs. We also present our positive and negative experiences in developing the approach, and conclude that regional sea conventions and marine research institutes in Europe should join forces to accelerate the development of ecosystem indicators and objectives, using existing concepts.


2020 ◽  
Vol 9 (2) ◽  
pp. 96 ◽  
Author(s):  
Gusatu ◽  
Yamu ◽  
Zuidema ◽  
Faaij

Over the last decade, the accelerated transition towards cleaner means of producing energy has been clearly prioritised by the European Union through large-scale planned deployment of wind farms in the North Sea. From a spatial planning perspective, this has not been a straight-forward process, due to substantial spatial conflicts with the traditional users of the sea, especially with fisheries and protected areas. In this article, we examine the availability of offshore space for wind farm deployment, from a transnational perspective, while taking into account different options for the management of the maritime area through four scenarios. We applied a mixed-method approach, combining expert knowledge and document analysis with the spatial visualisation of existing and future maritime spatial claims. Our calculations clearly indicate a low availability of suitable locations for offshore wind in the proximity of the shore and in shallow waters, even when considering its multi-use with fisheries and protected areas. However, the areas within 100 km from shore and with a water depth above –120 m attract greater opportunities for both single use (only offshore wind farms) and multi-use (mainly with fisheries), from an integrated planning perspective. On the other hand, the decrease of energy targets combined with sectoral planning result in clear limitations to suitable areas for offshore wind farms, indicating the necessity to consider areas with a water depth below –120 m and further than 100 km from shore. Therefore, despite the increased costs of maintenance and design adaptation, the multi-use of space can be a solution for more sustainable, stakeholder-engaged and cost-effective options in the energy deployment process. This paper identifies potential pathways, as well as challenges and opportunities for future offshore space management with the aim of achieving the 2050 renewable energy targets.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fabien Moullec ◽  
Rémy Asselot ◽  
Dominik Auch ◽  
Alexandra M. Blöcker ◽  
Gregor Börner ◽  
...  

Abstract Background Anthropogenic pressures on marine ecosystems have increased over the last 75 years and are expected to intensify in the future with potentially dramatic cascading consequences for human societies. It is therefore crucial to rebuild marine life-support systems and aim for future healthy ecosystems. Nowadays, there is a reasonable understanding of the impacts of human pressure on marine ecosystems; but no studies have drawn an integrative retrospective analysis of the marine research on the topic. A systematic consolidation of the literature is therefore needed to clearly describe the scientific knowledge clusters and gaps as well as to promote a new era of integrative marine science and management. We focus on the five direct anthropogenic drivers of biodiversity loss defined by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): (1) climate change; (2) direct exploitation; (3) pollution; (4) biological invasions; and (5) sea-use change. Our systematic map’s regional focus lies on the North Sea, which is among the most impacted marine ecosystems around the globe. The goal of the present study is to produce the first comprehensive overview of how marine research on anthropogenic drivers in the North Sea has grown and changed over the past 75 years. Ultimately, this systematic map will highlight the most urgent challenges facing the North Sea research domain. Methods The search will be restricted to peer-reviewed articles, reviews, meta-analyses, book chapters, book reviews, proceeding papers and grey literature using the most relevant search engines for literature published between 1945 and 2020. All authors will participate in the adjustment of the search in order to consider all relevant studies analyzing the effect of the direct anthropogenic drivers on the North Sea marine ecosystem. The references will be screened for relevance according to a predefined set of eligibility/ineligibility criteria by a pool of six trained reviewers. At stage one, each abstract and title will be independently screened by two reviewers. At stage two, potentially relevant references will be screened in full text by two independent reviewers. Subsequently, we will extract a suite of descriptive meta-data and basic information of the relevant references using the SysRev platform. The systematic map database composed will provide the foundation for an interactive geographical evidence map. Moreover, we will summarize our findings with cross-validation plots, heat maps, descriptive statistics, and a publicly available narrative synthesis. The aim of our visualization tools is to ensure that our findings are easily understandable by a broad audience.


2021 ◽  
Vol 34 ◽  
pp. 23
Author(s):  
Andreas Benkens ◽  
Claudia Buchholz ◽  
Bernadette Pogoda ◽  
Carsten Georg Harms

The European oyster Ostrea edulis played a key role in the North Sea by providing several ecosystem functions and services. Today, O. edulis is classified as severely degraded or functionally extinct in Europe. Marine conservation is focusing on biogenic reef restoration, namely the restoration of O. edulis in Natura 2000 sites of the North Sea. The identification of oyster larvae related to natural spatfalls of restored reefs and monitoring of larval drift is a key aspect of marine protected area management. Morphological identification and distinction from other abundant bivalve larvae using microscopy is difficult. Existing molecular biological methods are expensive and bound to stationary laboratory equipment, or are inadequate in the visualization. In this study, we identified nucleic acid lateral flow immunoassay (NALFIA), a well-established tool in human pathogen diagnostics, as an efficient approach for point-of-care (POC) testing in marine monitoring. Based on the genetic sequence of the mitochondrial cytochrome b of O. edulis, forward and reverse primers were developed. The reverse primer was labelled with fluorescent dye FITC, forward primer with biotin. Reaction on the lateral flow stripe could be realized with a single O. edulis larva in direct PCR with multiplex primers in a portable PCR-cycler. The established NALFIA system can distinguish O. edulis larvae from Crassostrea gigas and Mytilus edulis larvae, respectively. This method offers new approaches in POC testing in marine research and monitoring. It gives quick and clear results, is inexpensive, and could be easily adapted to other species of interest.


Marine Policy ◽  
2016 ◽  
Vol 68 ◽  
pp. 195-204 ◽  
Author(s):  
R. Brouwer ◽  
S. Brouwer ◽  
M.A. Eleveld ◽  
M. Verbraak ◽  
A.J. Wagtendonk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document