In situ ion exchange resin bags to estimate forest site quality

1989 ◽  
Vol 119 (1) ◽  
pp. 186-190 ◽  
Author(s):  
Y. Lundell
2008 ◽  
Vol 24 (6) ◽  
pp. 647-654 ◽  
Author(s):  
Corli Coetsee ◽  
Edmund C. February ◽  
William J. Bond

Abstract:There is a perception that sustained frequent fires cause nitrogen limitation over the long term (50–100 y) by volatilizing the nitrogen in soil, plant biomass and litter. Here we test this perception in a South African savanna located in the Kruger National Park. At our study site we compare the effects of 50 y of fire exclusion, season (August and February) and frequency (triennial and annual August and triennial February) of burn on nitrogen cycling and availability. We do this using three different methods to determine nitrogen mineralization; in situ incubations, laboratory incubations and ion-exchange resin bags. On each treatment we established two parallel transects 100 m apart with 10 sampling points per treatment along these transects. Daily mineralization rates for in situ incubations were determined monthly from August 2004 to June 2005 at each of the sampling points. Ion-exchange resin bags were buried (5 cm) at the same points and left in the field from August 2004 to August 2005. In February 2005 five randomly located soil samples from each of the four treatments were collected for laboratory incubations using a 7-cm-diameter soil auger. Regardless of method used our results show that there are no significant differences in daily nitrogen mineralization rates after 50 y of different burning treatments from annual burning to fire exclusion. In fact, both in situ and laboratory incubations show that nitrogen availability is higher on the annual burn than the fire exclusion (0.16 μg g−1 soil d−1 vs. 0.11 μg g−1 soil d−1 and 0.46 μg g−1 soil d−1 vs. 0.30 μg g−1 soil d−1 respectively). Perceived negative effects of fire on ecosystem functioning has curbed the use of fire as a management tool with fire often actively suppressed in savanna. The results of our study show that fire can be used more vigorously in mesic African savanna to manipulate tree:grass ratios without negatively affecting the nitrogen cycle.


2000 ◽  
Vol 31 (3-4) ◽  
pp. 543-546 ◽  
Author(s):  
Nelson Thiffault ◽  
Robert Jobidon ◽  
Carol De Blois ◽  
Alison D. Munson

Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1389 ◽  
Author(s):  
K Sakadevan ◽  
MJ Hedley ◽  
AD Mackay

This study describes the construction, installation and evaluation of an in situ mini-lysimeter with a removable ion exchange resin trap for measuring nutrient losses by leaching from grazed pastures. The resin trap efficiently removed solutes from simulated drainage water at a flow rate of 14 mm h-1. Over 88% of each of the solutes was removed from synthetic nutrient solution containing 1.65 mM nitrate-N, 1.65 mM ammonium-N, 0.25 mM sulfate-S (SO2-4-S) and 0.6 mM potassium. In a further test of the system, sulfate leached in simulated rainstorm events from two undisturbed soil cores, taken from legume based pastures of contrasting superphosphate (SSP) fertilizer history following 495 mm of simulated rainfall, was all recovered using the resin trap. Seven times more SO2-4 (21.2 kg S ha-1) was leached and recovered from the resin trap of the core collected from the high fertility (HF, 375 kg SSP ha-1 year-1) site than from the low fertility (LF, 125 kg SSP ha-1 year-1) site (3.1 kg S ha-1). As part of the field evaluation of the technique, lysimeters with resin traps were placed in the field at four sites (8 lysimeters/site) contrasting in fertilizer history, landslope, and dung and urine return. Two additional lysimeters with drainage collection reservoirs (vessels) and eight soil solution samplers were placed on each site to collect drainage water and soil solution. The amount of SO2-4 present in drainage water was more closely related (1:1, R2 = 0.861) to the amount of SO2-4 collected by the resin traps over a period of 9 months than estimates made using soil solution samplers (1:1, R2 = 0.829). The advantages of the resin trap technique over alternative methods for estimating SO4-S leaching losses from field soils are discussed, as are applications of the technique for studying nutrient losses and cycling in grazed pastures.


2022 ◽  
Vol 422 ◽  
pp. 126960
Author(s):  
Chen Liu ◽  
Jenna Chu ◽  
Natalie L. Cápiro ◽  
John D. Fortner ◽  
Kurt D. Pennell

Sign in / Sign up

Export Citation Format

Share Document