Effect of phenylphosphorodiamidate on urea hydrolysis, ammonia volatilization and rice growth in an alkali soil

1986 ◽  
Vol 94 (3) ◽  
pp. 313-320 ◽  
Author(s):  
D. L. N. Rao ◽  
S. K. Ghai
2019 ◽  
Vol 8 (3) ◽  
pp. 23
Author(s):  
Maru Ali ◽  
Ahmed Osumanu Haruna ◽  
Nik Muhamad Abd Majid ◽  
Walter Charles Primus ◽  
Nathaniel Maikol ◽  
...  

Although urea use in agriculture is on the increase, increase in pH at soil microsite due to urea hydrolysis which causes ammonia emission can reduce N use efficiency. Among the interventions used to mitigate ammonia loss include urease inhibitors, clinoptilolite zeolite, coated urea, and biochar but with little attention to the use of soil water levels to control ammonia volatilization. The objective of this study was to determine the effects of soil water levels on ammonia volatilization from soils with and without chicken litter biochar. Dry soils with and without chicken litter biochar were subjected to 0%, 25% 50%, 75%, 100%, and 125% soil water. There was no urea hydrolysis in the soil without water. Chicken litter biochar as soil amendment effectively mitigated ammonia loss at 1% to 32% and 80% to 115% field capacity. However, urea used on soil only showed lower ammonia loss at 33% to 79% and 116% to 125% field capacity compared with the soils with chicken litter biochar. At 50% field capacity ammonia loss was high in soils with and without chicken litter biochar. Although chicken litter biochar is reputed for improving soil chemical properties, water levels in this present study affected soil chemical properties differently. Fifty percent field capacity, significantly reduced soil chemical properties. These findings suggest that timely application of urea at the right field capacity can mitigate ammonia emission. Therefore, whether soils are amended with or without chicken litter biochar, urea application should be avoided at 50% field capacity especially in irrigated crops.


1971 ◽  
Vol 1 (2) ◽  
pp. 69-79 ◽  
Author(s):  
D. Carrier ◽  
B. Bernier

In a field study, percentage of nitrogen lost as ammonia from a jack pine (Pinusbanksiana Lamb.) soil increased with increasing rates of urea application between 112 and 448 kg N/ha. After 7 days, losses amounted to 18–28% of a 224 kg urea-N/ha application, representing 60–87% of the total losses measured over a 6-week period. Maximum volatilization rates occurred between the third and the fifth day after fertilization, at which time urea hydrolysis was virtually complete. Negligible ammonia losses were measured in plots treated with ammonium sulfate, ammonium nitrate, and sulfur-coated urea. Applying superphosphate with urea markedly depressed ammonia volatilization, an effect which was enhanced by a joint application of K2SO4•MgSO4. Reduction of volatilization by artificial precipitation was significant and increased with increasing precipitation when the latter was applied soon after fertilization; decreases in volatilization were then related to the amount of residual urea subject to diffusion into the humus layer or to leaching towards the underlying soil horizons.


1988 ◽  
Vol 39 (3) ◽  
pp. 351 ◽  
Author(s):  
ACF Trevitt ◽  
JR Freney ◽  
JR Simpson ◽  
WA Muirhead

The effects of differences in size of microplot and type of enclosure on the floodwater parameters determining ammonia volatilization were studied. The results show that the use of enclosures can retard urea hydrolysis, suppress the maximum daytime pH values (an effect which is cumulative over a number of days), and significantly reduce the potential for ammonia volatilization. These effects are the consequence of lowered light (and heat) penetration in the enclosed area due to shading of the floodwater by the enclosure walls. The magnitude of these effects varies with plot size and shape, and the material used for construction of the plot wall. A preliminary analysis suggests that, if errors due to shading are acceptable when 90% or more of the incident solar radiation always penetrates to the enclosed floodwater, then square plots with opaque walls must be at least 1.2 m along a side and cylindrical plots must be at least 1.2 m in diameter when wall height is 0.1 m above the floodwater.


2000 ◽  
Vol 31 (19-20) ◽  
pp. 3177-3191 ◽  
Author(s):  
Paola Gioacchini ◽  
Camilla Giovannini ◽  
Claudio Marzadori ◽  
Livia Vittori Antisari ◽  
Andrea Simoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document