Cytogenetic and biochemical studies on the nucleolus organizing regions of chromosomes in in vivo and in vitro aging

AGE ◽  
1992 ◽  
Vol 15 (2) ◽  
pp. 41-43 ◽  
Author(s):  
Teimuraz Lezhava ◽  
Nana Dvalishvili
2000 ◽  
Vol 113 (16) ◽  
pp. 2821-2827 ◽  
Author(s):  
L. Quarmby

Recent biochemical studies of the AAA ATPase, katanin, provide a foundation for understanding how microtubules might be severed along their length. These in vitro studies are complemented by a series of recent reports of direct in vivo observation of microtubule breakage, which indicate that the in vitro phenomenon of catalysed microtubule severing is likely to be physiological. There is also new evidence that microtubule severing by katanin is important for the production of non-centrosomal microtubules in cells such as neurons and epithelial cells. Although it has been difficult to establish the role of katanin in mitosis, new genetic evidence indicates that a katanin-like protein, MEI-1, plays an essential role in meiosis in C. elegans. Finally, new proteins involved in the severing of axonemal microtubules have been discovered in the deflagellation system of Chlamydomonas.


1981 ◽  
Vol 5 (8) ◽  
pp. 774 ◽  
Author(s):  
M ADOLPHE ◽  
D BLONDELON ◽  
P JAFFRAY ◽  
C PERRET ◽  
L ZIZINE ◽  
...  

1975 ◽  
Vol 9 (4) ◽  
pp. 63-66 ◽  
Author(s):  
G. H. Kenner ◽  
W. D. Pasco ◽  
J. T. Frakes ◽  
S. D. Brown

2010 ◽  
Vol 84 (4) ◽  
pp. 698-706 ◽  
Author(s):  
J. A. Schmidt ◽  
L. K. Abramowitz ◽  
H. Kubota ◽  
X. Wu ◽  
Z. Niu ◽  
...  

1983 ◽  
Vol 116 (3-4) ◽  
pp. 323-331 ◽  
Author(s):  
G. Bronzetti ◽  
C. Bauer ◽  
C. Corsi ◽  
R. Del Carratore ◽  
A. Galli ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (10) ◽  
pp. 273
Author(s):  
Alessandro Alan Porporati ◽  
Laurent Gremillard ◽  
Jérôme Chevalier ◽  
Rocco Pitto ◽  
Marco Deluca

Recent studies on zirconia-toughened alumina (ZTA) evidenced that in vivo aged implants display a much higher monoclinic zirconia content than expected from in vitro simulations by autoclaving. At the moment, there is no agreement on the source of this discrepancy: Some research groups ascribe it to the effect of mechanical impact shocks, which are generally not implemented in standard in vitro aging or hip walking simulators. Others invoke the effect of metal transfer, which should trigger an autocatalytic reaction in the body fluid environment, accelerating the kinetics of tetragonal-to-monoclinic transformation in vivo. Extrapolations of the aging kinetics from high (autoclave) to in vivo temperature are also often disputed. Last, Raman spectroscopy is by far the preferred method to quantify the amount of monoclinically transformed zirconia. There are, however, many sources of errors that may negatively affect Raman results, meaning that the final interpretation might be flawed. In this work, we applied Raman spectroscopy to determine the monoclinic content in as-received and in vitro aged ZTA hip joint implants, and in one long-term retrieval study. We calculated the monoclinic content with the most used equations in the literature and compared it with the results of X-ray diffraction obtained on a similar probe depth. Our results show, contrary to many previous studies, that the long-term surface stability of ZTA ceramics is preserved. This suggests that the Raman technique does not offer consistent and unique results for the analysis of surface degradation. Moreover, we discuss here that tetragonal-to-monoclinic transformation is also necessary to limit contact damage and wear stripe extension. Thus, the surface metastability of zirconia-containing ceramics may be a non-issue.


Genetics ◽  
1984 ◽  
Vol 106 (1) ◽  
pp. 95-107
Author(s):  
Walter F Eanes

ABSTRACT Several biochemical studies have suggested that in Drosophila melanogaster the two common allozymes of G6PD differ in their in vitro activities and thermal stabilities. Yet, it remains to be shown that these characterizations reflect actual in vivo differences and are not artifacts of the biochemical approach. In this study it is shown that in vivo activity differences must exist between these two variants. This conclusion arises from the observation that the viability of flies bearing a low activity allele of 6PGD is strongly dependent on the genotype at the G6PD (Zw) locus, whereas no measurable difference in viability can be detected between Zw genotypes in a normal activity 6PGD background. These viability interactions are in the direction predicted by the reported in vitro activities of the allozymes and the proposed deleterious effects of 6-phosphogluconate accumulation.—In addition, a genetic scheme is used that uncouples and quantifies the effects of viability modifiers in the region of the Zw locus, while homogenizing 98% of the X chromosome. The viability of different Zw genotypes is measured by examining whole chromosome viabilities relative to the FM6 balancer chromosome. The advantages of this particular scheme are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Alessandra Stacchiotti ◽  
Francesca Rovetta ◽  
Matteo Ferroni ◽  
Giovanni Corsetti ◽  
Antonio Lavazza ◽  
...  

Cisplatin (CisPt) is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h–8 h) before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.


2002 ◽  
Vol 57 (6) ◽  
pp. B239-B246 ◽  
Author(s):  
J. R. Smith ◽  
S. Venable ◽  
T. W. Roberts ◽  
E. J. Metter ◽  
R. Monticone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document