Invariant star-product on a Poisson-Lie group and h-deformation of the corresponding Lie algebra

1997 ◽  
Vol 36 (12) ◽  
pp. 3007-3014
Author(s):  
M. Mansour
Keyword(s):  
2003 ◽  
Vol 15 (05) ◽  
pp. 425-445 ◽  
Author(s):  
Pierre Bieliavsky ◽  
Simone Gutt ◽  
Martin Bordemann ◽  
Stefan Waldmann

In this paper, we describe all traces for the BCH star-product on the dual of a Lie algebra. First we show by an elementary argument that the BCH as well as the Kontsevich star-product are strongly closed if and only if the Lie algebra is unimodular. In a next step we show that the traces of the BCH star-product are given by the ad-invariant functionals. Particular examples are the integration over coadjoint orbits. We show that for a compact Lie group and a regular orbit one can even achieve that this integration becomes a positive trace functional. In this case we explicitly describe the corresponding GNS representation. Finally we discuss how invariant deformations on a group can be used to induce deformations of spaces where the group acts on.


Author(s):  
Ercüment H. Ortaçgil
Keyword(s):  

The discussions up to Chapter 4 have been concerned with the Lie group. In this chapter, the Lie algebra is constructed by defining the operators ∇ and ∇̃.


2005 ◽  
Vol 15 (03) ◽  
pp. 793-801 ◽  
Author(s):  
ANTHONY M. BLOCH ◽  
ARIEH ISERLES

In this paper we develop a theory for analysing the "radius" of the Lie algebra of a matrix Lie group, which is a measure of the size of its commutators. Complete details are given for the Lie algebra 𝔰𝔬(n) of skew symmetric matrices where we prove [Formula: see text], X, Y ∈ 𝔰𝔬(n), for the Frobenius norm. We indicate how these ideas might be extended to other matrix Lie algebras. We discuss why these ideas are of interest in applications such as geometric integration and optimal control.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Camelia Pop

A controllable drift-free system on the Lie group G=SO(3)×R3×R3 is considered. The dynamics and geometrical properties of the corresponding reduced Hamilton’s equations on g∗,·,·- are studied, where ·,·- is the minus Lie-Poisson structure on the dual space g∗ of the Lie algebra g=so(3)×R3×R3 of G. The numerical integration of this system is also discussed.


Author(s):  
Günter Harder

This chapter shows that certain classes of Harish-Chandra modules have in a natural way a structure over ℤ. The Lie group is replaced by a split reductive group scheme G/ℤ, its Lie algebra is denoted by 𝖌ℤ. On the group scheme G/ℤ there is a Cartan involution 𝚯 that acts by t ↦ t −1 on the split maximal torus. The fixed points of G/ℤ under 𝚯 is a flat group scheme 𝒦/ℤ. A Harish-Chandra module over ℤ is a ℤ-module 𝒱 that comes with an action of the Lie algebra 𝖌ℤ, an action of the group scheme 𝒦, and some compatibility conditions is required between these two actions. Finally, 𝒦-finiteness is also required, which is that 𝒱 is a union of finitely generated ℤ modules 𝒱I that are 𝒦-invariant. The definitions imitate the definition of a Harish-Chandra modules over ℝ or over ℂ.


1965 ◽  
Vol 17 ◽  
pp. 550-558 ◽  
Author(s):  
Arthur A. Sagle

In (4) Malcev generalizes the notion of the Lie algebra of a Lie group to that of an anti-commutative "tangent algebra" of an analytic loop. In this paper we shall discuss these concepts briefly and modify them to the situation where the cancellation laws in the loop are replaced by a unique two-sided inverse. Thus we shall have a set H with a binary operation xy defined on it having the algebraic properties(1.1) H contains a two-sided identity element e;(1.2) for every x ∊ H, there exists a unique element x-1 ∊ H such that xx-1 = x-1x = e;


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1011
Author(s):  
Aleksy Tralle

Let G / H be a homogeneous space of a compact simple classical Lie group G. Assume that the maximal torus T H of H is conjugate to a torus T β whose Lie algebra t β is the kernel of the maximal root β of the root system of the complexified Lie algebra g c . We prove that such homogeneous space is formal. As an application, we give a short direct proof of the formality property of compact homogeneous 3-Sasakian spaces of classical type. This is a complement to the work of Fernández, Muñoz, and Sanchez which contains a full analysis of the formality property of S O ( 3 ) -bundles over the Wolf spaces and the proof of the formality property of homogeneous 3-Sasakian manifolds as a corollary.


2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


Author(s):  
Tobias Diez ◽  
Bas Janssens ◽  
Karl-Hermann Neeb ◽  
Cornelia Vizman

Abstract Let $M$ be a manifold with a closed, integral $(k+1)$-form $\omega $, and let $G$ be a Fréchet–Lie group acting on $(M,\omega )$. As a generalization of the Kostant–Souriau extension for symplectic manifolds, we consider a canonical class of central extensions of ${\mathfrak{g}}$ by ${\mathbb{R}}$, indexed by $H^{k-1}(M,{\mathbb{R}})^*$. We show that the image of $H_{k-1}(M,{\mathbb{Z}})$ in $H^{k-1}(M,{\mathbb{R}})^*$ corresponds to a lattice of Lie algebra extensions that integrate to smooth central extensions of $G$ by the circle group ${\mathbb{T}}$. The idea is to represent a class in $H_{k-1}(M,{\mathbb{Z}})$ by a weighted submanifold $(S,\beta )$, where $\beta $ is a closed, integral form on $S$. We use transgression of differential characters from $ S$ and $ M $ to the mapping space $ C^\infty (S, M) $ and apply the Kostant–Souriau construction on $ C^\infty (S, M) $.


Author(s):  
Daniel Oeh

Abstract Let $(G,\tau )$ be a finite-dimensional Lie group with an involutive automorphism $\tau $ of $G$ and let ${{\mathfrak{g}}} = {{\mathfrak{h}}} \oplus{{\mathfrak{q}}}$ be its corresponding Lie algebra decomposition. We show that every nondegenerate strongly continuous representation on a complex Hilbert space ${\mathcal{H}}$ of an open $^\ast $-subsemigroup $S \subset G$, where $s^{\ast } = \tau (s)^{-1}$, has an analytic extension to a strongly continuous unitary representation of the 1-connected Lie group $G_1^c$ with Lie algebra $[{{\mathfrak{q}}},{{\mathfrak{q}}}] \oplus i{{\mathfrak{q}}}$. We further examine the minimal conditions under which an analytic extension to the 1-connected Lie group $G^c$ with Lie algebra ${{\mathfrak{h}}} \oplus i{{\mathfrak{q}}}$ exists. This result generalizes the Lüscher–Mack theorem and the extensions of the Lüscher–Mack theorem for $^\ast $-subsemigroups satisfying $S = S(G^\tau )_0$ by Merigon, Neeb, and Ólafsson. Finally, we prove that nondegenerate strongly continuous representations of certain $^\ast $-subsemigroups $S$ can even be extended to representations of a generalized version of an Olshanski semigroup.


Sign in / Sign up

Export Citation Format

Share Document