Molecular imprinting for chiral separations and drug screening purposes using monolithic stationary phases in CEC

1999 ◽  
Vol 49 (S1) ◽  
pp. S93-S94 ◽  
Author(s):  
L. Schweitz ◽  
L. I. Andersson ◽  
S. Nilsson
Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 112
Author(s):  
Marine Morvan ◽  
Ivan Mikšík

Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, β-amyloid and α-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer's disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations.


2000 ◽  
Vol 51 (5-6) ◽  
pp. 283-293 ◽  
Author(s):  
S. Svensson ◽  
A. Karlsson ◽  
O. Gyllenhaal ◽  
J. Vessman

2007 ◽  
Vol 28 (11) ◽  
pp. 1668-1673 ◽  
Author(s):  
Karine Faure ◽  
Maximilien Blas ◽  
Omar Yassine ◽  
Nathalie Delaunay ◽  
Gérard Crétier ◽  
...  

2005 ◽  
Vol 30 (4) ◽  
pp. 67-73 ◽  
Author(s):  
Chin-Yin Hung ◽  
Han-Hung Huang ◽  
Ching-Chiang Hwang

Styrene is used in a variety of chemical industries. Environmental and occupational exposures to styrene occur predominantly through inhalation. The major metabolite of styrene is present in two enantiomeric forms, chiral R- and S- hydroxy-1-phenyl-acetic acid (R-and S-mandelic acid, MA). Thus, the concentration of MA, particularly of its enantiomers, has been used in urine tests to determine whether workers have been exposed to styrene. This study describes a method of analyzing mandelic acid using molecular imprinting techniques and HPLC detection to perform the separation of diastereoisomers of mandelic acid. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting using (+) MA, (-) MA or (+) phenylalanine, (-) phenylalanine as templates. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were copolymerized in the presence of the template molecules. The bulk polymerization was carried out at 4ºC under UV radiation. The resulting MIP was grounded into 25~44¼m particles, which were slurry packed into analytical columns. After the template molecules were removed, the MIP-packed columns were found to be effective for the chromatographic resolution of (±)-mandelic acid. This method is simpler and more convenient than other chromatographic methods.


Sign in / Sign up

Export Citation Format

Share Document